The answer is: " -5/3 " ; or, write as: " -1 ⅔ " .
_____________________________________________
Explanation:
_____________________________________________
(-5/6) + (-5/6) = (-5/6) <span>− (5/6) ;
------> {since: "adding a negative" is the same a "subtracting a positive"} ;
------> </span> (-5/6) − (5/6) = (-5 − 5) / 6 ;
= -10/6 = (-10/2) / (6/2) ;
_____________________________________________________
= " -5/3 " ; or, write as: " -1 ⅔ " .
_____________________________________________________
Answer:
75
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Geometry</u>
- Sum of Angles in a Quadrilateral: 360
Step-by-step explanation:
<u>Step 1: Set up</u>
75 + 120 + 90 + ∠4 = 360
<u>Step 2: Solve</u>
- Add: 285 + ∠4 = 360
- [Subtraction Property of Equality] Subtract 285 on both sides: ∠4 = 75
Answer:
x=27
Step-by-step explanation:
63+90+x=180
63+90=153
180-153= 27
Answer:
<u>The perimeter of the pentagon ≅ 19 units (approximately)</u>
Step-by-step explanation:
Clockwise, starting from the base of the pentagon, we have:
- Base of the pentagon or bottom side ≅ 4 units
- 2nd side ≅ 3.75 units
- 3rd side ≅ 3.75 units
- 4th side ≅ 3.75 units
- 5th side ≅ 3.75 units
In consequence,
Perimeter of the pentagon ≅ 4 + 3.75 + 3.75 + 3.75 + 3.75
<u>Perimeter of the pentagon ≅ 19 units</u>
+60 two negatives equal a positive