Answer:
import numpy as np
import matplotlib.pyplot as plt
def calculate_pi(x,y):
points_in_circle=0
for i in range(len(x)):
if np.sqrt(x[i]**2+y[i]**2)<=1:
points_in_circle+=1
pi_value=4*points_in_circle/len(x)
return pi_value
length=np.power(10,6)
x=np.random.rand(length)
y=np.random.rand(length)
pi=np.zeros(7)
sample_size=np.zeros(7)
for i in range(len(pi)):
xs=x[:np.power(10,i)]
ys=y[:np.power(10,i)]
sample_size[i]=len(xs)
pi_value=calculate_pi(xs,ys)
pi[i]=pi_value
print("The value of pi at different sample size is")
print(pi)
plt.plot(sample_size,np.abs(pi-np.pi))
plt.xscale('log')
plt.yscale('log')
plt.xlabel('sample size')
plt.ylabel('absolute error')
plt.title('Error Vs Sample Size')
plt.show()
Explanation:
The python program gets the sample size of circles and the areas and returns a plot of one against the other as a line plot. The numpy package is used to mathematically create the circle samples as a series of random numbers while matplotlib's pyplot is used to plot for the visual statistics of the features of the samples.
It is important to have regular maintenance on office equipment because by having regular maintenance they would be able to determine if a problem is about to occur on the office equipment before it puts the equipment out of commission. This would save money for the office because they would be able to fix the problem cheaper than buying new equipment.
Answer:
A polyribosome (or polysome or ergasome) is a group of ribosomes bound to an mRNA molecule like “beads” on a “thread”. It consists of a complex of an mRNA molecule and two or more ribosomes that act to translate mRNA instructions into polypeptides.
Answer:
information processing is concerned with recording arranging processing retrieving and disseminating of information