2 14/16. .........................That's the answer
Answer:
<h2>ratio is</h2>
Step-by-step explanation:
<h2>4:7 your answer is like this . follow me</h2>
Complete question:
He amount of time that a customer spends waiting at an airport check-in counter is a random variable with mean 8.3 minutes and standard deviation 1.4 minutes. Suppose that a random sample of n equals 47 customers is observed. Find the probability that the average time waiting in line for these customers is
a) less than 8 minutes
b) between 8 and 9 minutes
c) less than 7.5 minutes
Answer:
a) 0.0708
b) 0.9291
c) 0.0000
Step-by-step explanation:
Given:
n = 47
u = 8.3 mins
s.d = 1.4 mins
a) Less than 8 minutes:

P(X' < 8) = P(Z< - 1.47)
Using the normal distribution table:
NORMSDIST(-1.47)
= 0.0708
b) between 8 and 9 minutes:
P(8< X' <9) =![[\frac{8-8.3}{1.4/ \sqrt{47}}< \frac{X'-u}{s.d/ \sqrt{n}} < \frac{9-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20%5B%5Cfrac%7B8-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%3C%20%5Cfrac%7BX%27-u%7D%7Bs.d%2F%20%5Csqrt%7Bn%7D%7D%20%3C%20%5Cfrac%7B9-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D)
= P(-1.47 <Z< 6.366)
= P( Z< 6.366) - P(Z< -1.47)
Using normal distribution table,

0.9999 - 0.0708
= 0.9291
c) Less than 7.5 minutes:
P(X'<7.5) = ![P [Z< \frac{7.5-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20P%20%5BZ%3C%20%5Cfrac%7B7.5-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D%20)
P(X' < 7.5) = P(Z< -3.92)
NORMSDIST (-3.92)
= 0.0000
Answer:
11 meters
Step-by-step explanation:
Lets say that w = width of the rectangle, to start. If the length of the rectangle is 3 meters greater than 2 times the width, the length of the rectangle is equal to 3 + 2w.
The perimeter of the rectangle is 2 * length of rectangle + 2 * width of the rectangle. With the perimeter being equal to 30 and width being w and length being 2w+3:
The perimeter of the rectangle is 2(w) + 2(2w+3) = 30.
We first need to find out w first, which will give us the width of the rectangle. Taking it step by step, we get:
2w + 4w + 6 = 30
6w + 6= 30
6w = 24 which is done by subtracting both sides by 6 to put the variables on one side and the values on the other side
w = 4 which is done by dividing 6 on both sides
Ultimately, this gets width to be 4 meters. Now that we found the width, we need to plug w = 4 into the equation we set up for length which is 2w+3.
That being said, the ANSWER is:
length of rectangle = 2(4)+3 = 11 meters
Hope this helps! :)
Answer:
<h2>(-∞,∞) Bottom answer</h2>
I hope this helps you with your algebra