1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
12

Simplify. 54+4(3/4−1/2)2

Mathematics
1 answer:
Effectus [21]3 years ago
7 0

Answer:

56

Step-by-step explanation:

54 + 4(3/4 − 1/2)2

=> 54 + 4(1/4)2

=> 54 + (1)2

=> 54 + 2

=> 56

Therefore, 56 is our answer.

Hoped this helped.

You might be interested in
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Hamburger Hut sells regular hamburgers as well as a larger burger. Either type can include cheese, relish, lettuce, tomato, must
Studentka2010 [4]

Answer:

a) 40 different hamburgers can be ordered with exactly three extras

b) 20 different regular hamburgers can be ordered with exactly three extras

c) 7 different regular hamburgers can be ordered with at least five extras

Step-by-step explanation:

The order in which the extras are ordered is not important. So we use the combinations formula to solve this question.

Combinations formula:

C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

In this problem:

2 options of hamburger(regular or larger)

6 options of extras(cheese, relish, lettuce, tomato, mustard, or catsup.).

(a) How many different hamburgers can be ordered with exactly three extras?

1 hamburger type, from a set of 2.

3 extras, from a set of 6. So

C_{2,1}*C_{6,3} = \frac{2!}{1!(2-1)!}*\frac{6!}{3!(6-3)!} = 2*20 = 40

40 different hamburgers can be ordered with exactly three extras

(b) How many different regular hamburgers can be ordered with exactly three extras?

3 extras, from a set of 6. So

C_{6,3} = \frac{6!}{3!(6-3)!} = 20

20 different regular hamburgers can be ordered with exactly three extras

(c) How many different regular hamburgers can be ordered with at least five extras?

Five extras:

5 extras, from a set of 6. So

C_{6,5} = \frac{6!}{5!(6-5)!} = 6

Six extras:

6 extras, from a set of 6. So

C_{6,6} = \frac{6!}{6!(6-6)!} = 1

6 + 1 = 7

7 different regular hamburgers can be ordered with at least five extras

8 0
3 years ago
Provider A changes $55 for installation and charges $35.50 per month for the basic package. Provider B offers free installation
Igoryamba

Let n =  number of months both have their services

Provider A:

C = 35.50n + 55

Provider B:

B = 35.50n

Provider A will always cost more than

provider B because of the $55 installation fee

3 0
3 years ago
The width of a rectangle is 2x + 4 and the length of the
iren [92.7K]

Given:

Width of a rectangle = 2x+4

Length of the rectangle = 6x+12

To find:

The ratio of the width to the length.

Solution:

We need to find the ratio of the width to the length.

\text{Required Ratio}=\dfrac{\text{Width}}{\text{Length}}

Putting the given values, we get

\text{Required Ratio}=\dfrac{2x+4}{6x+12}

\text{Required Ratio}=\dfrac{2(x+2)}{6(x+2)}

\text{Required Ratio}=\dfrac{2}{6}

\text{Required Ratio}=\dfrac{1}{3}

\text{Required Ratio}=1:3

Therefore, the ratio of the width to the length is 1:3.

8 0
3 years ago
Solve the equation A = bh for b. B = Ah b = A/h b = h/A b = h – A.
kondor19780726 [428]

Answer:

b=A/h

Step-by-step explanation:

In order to solve for b, we need to isolate b. We can do this by dividing both sides by h:

A = bh

A/h=b

b=A/h

4 0
2 years ago
Other questions:
  • an t-shirt was originally priced at $45, but was placed on sale for 10% odd the original price. if a sales tax of 8% was added o
    10·2 answers
  • Mr. Chin's hotel bill is $143. He leaves 12% of the hotel bill as a tip for the housekeeping service. What is the total amount M
    15·1 answer
  • Jane is making fruit baskets. She has 48 bananas and 72 apples. What is the greatest number of baskets that Jane can make if eac
    15·2 answers
  • Evaluate C(7, 5).<br><br> 21<br> 42<br> 1,008
    10·1 answer
  • Find the value of the expression (3x−12)+12(xy−10)(3x-12)+12(xy-10) for x=4x=4 and y=6y=6 .
    8·1 answer
  • Are sin and cosine graphs supposed to be curved (u-shape) or up and down (like a v-shape)?
    7·2 answers
  • Which point is an x-intercept of the quadratic equation (x-8)(x+9)
    6·2 answers
  • Find the slope of the line that passes through these two points: (- 1, 0) and (4, - 2) .
    9·1 answer
  • Im giving out my points to the one who answers ! :)
    15·2 answers
  • Pls help. Abcdefghijklmnopqrstuvwxyz?????
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!