Answer:
![\displaystyle \frac{\cos A}{\cos B}=1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Ccos%20A%7D%7B%5Ccos%20B%7D%3D1)
Step-by-step explanation:
<u>Trigonometric Ratios</u>
The relations between the sides of a right triangle and the angles are called trigonometric ratios.
The longest side of the triangle is called the hypotenuse and the other two sides are the legs.
Selecting any of the acute angles as a reference, it has an adjacent side and an opposite side. The trigonometric ratios are defined upon those sides.
The cosine is defined as:
![\displaystyle \cos\theta=\frac{\text{adjacent leg}}{\text{hypotenuse}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ccos%5Ctheta%3D%5Cfrac%7B%5Ctext%7Badjacent%20leg%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D)
Considering angle A, we have:
![\displaystyle \cos A=\frac{3}{4.24}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ccos%20A%3D%5Cfrac%7B3%7D%7B4.24%7D)
Considering angle B:
![\displaystyle \cos B=\frac{3}{4.24}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ccos%20B%3D%5Cfrac%7B3%7D%7B4.24%7D)
Both expressions are exactly the same, thus:
![\displaystyle \frac{\cos A}{\cos B}=1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Ccos%20A%7D%7B%5Ccos%20B%7D%3D1)