Answer:
Options B and C
Explanation:
Let's take a look at the options and get our answer by way of elimination. The basic definition of a neutral solution is given as;
A neutral solution is a substance which is neither acid nor basic . it has a PH of 7. it will have equal amount of H+ AND OH- ions in it.
a) a neutral solution does not contain any H3O+ or OH- This is wrong because take water as an example, it is neutral but contains both ions.
b) a neutral solution contains [H2O] = [H3O+]. This option is correct cause it is in line with the definition above.
c) an acidic solution has [H3O⁺] > [OH⁻]. Acidic solutions are any solution that has a higher concentration of hydrogen ions than water. This option is correct.
d) a basic solution does not contain any H3O⁺. This option is wrong. Basic solutions are any solution that has a higher concentration of hydroxide ions than water. This means they contain H3O⁺ but [OH⁻] is greater.
The buoyancy of an object is dictated by its density. So let us calculate for density, where:density = mass / volume
Calculate the volume first of a solid cube:volume = (6 cm)^3 = 216 cm^3 = 216 mL
Therefore density is:density = 270 g / 216 mLdensity = 1.25 g / mL
Therefore this object will float in the layer in which the density is more than 1.25 g / mL.
I don’t understand the question be more specific or take a picture
Explanation:
The two half equations are;
3e + HNO3 → NO
S→ H2SO4 + 6e
When balancing half equations, we have to make sure the number of electrons gained is equal to the number of electrons lost.
<em>Which factor will you use for the top equation?</em>
We multiply by 2 to make the number of electrons = 6e
<em>Which factor will you use for the bottom equation?</em>
We multiply by 1 to make the number of electrons = 6e
<u>Given:</u>
Initial velocity (v1) = 0 m/s
Final velocity (v2) = 30 m/s
Acceleration (a) = 6.1 m/s2
<u>To determine:</u>
The time (t) taken to reach the final speed
<u>Explanation:</u>
Use the relation:
Acceleration (a) = [final velocity(v2) - initial velocity (v1)]/time (t)
t = (v2-v1)/a = 30-0/6.1 = 4.92 s
Ans: Time taken is around 4.9 s