The only one I know for sure is Mass is always conserved In a Chemical reaction.
Answer:
249 L
Explanation:
Step 1: Write the balanced equation
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
Step 2: Calculate the moles of CO₂ produced from 5.00 moles of C₃H₈
The molar ratio of C₃H₈ to CO₂ is 1:3. The moles of CO₂ produced are 3/1 × 5.00 mol = 15.0 mol
Step 3: Convert "30.0°C" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 30.0°C + 273.15 = 303.2 K
Step 4: Calculate the volume of carbon dioxide
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 15.0 mol × 0.0821 atm.L/mol.K × 303.2 K/1.50 atm
V = 249 L
The equation is
W = C/F
W= 3.00 x 10^8 m/sec
——————————
6.165 x 10^14 Hz
W= 4.87 x 10^-7 m
Energy is
E=hF
E= (6.626 x 10^-34 Jxsec )(6.165 x 10^14 Hz)
E= 4.085 x 10^-19 J
Answer:
They are solid (with the exception of mercury, Hg, a liquid).
They are shiny, good conductors of electricity and heat.
They are ductile (they can be drawn into thin wires).
They are malleable (they can be easily hammered into very thin sheets).
If this satisfies you please consider giving me brainliest :)