Assuming that the reactants are:
(NH4)2SO4 (aq) + Ba(NO3)2 (aq)
and the products are:
BaSO4 (s) + 2NH4NO3 (aq),
then you will have to determine which product is insoluble. You should have access to solubility rules to help you determine this.
According to the solubility rules, the following elements are considered insoluble when paired with SO4:
Sr^2+, Ba^2+, Pb^2+, Ag^2+, and Ca^2+
Therefore, the precipitate will be BaSO4 (s).
We do a heat balance to solve this:
(m cp ΔT)water = -(m cp ΔT)metal
100.8 (4.18) (27 - 22) = -65 (cp)(27-100)
cp = 100.8 (4.18) (27 - 22) / (-65 (27-100))
cp = 0.44 J/ (°C × g)
The specific heat of the metal is 0.44 J/ (°C × g)
Answer:
The primary role of the carbonic-acid-bicarbonate buffer system is to neutralize the hydronium ions forming carbonic acid and water when any acidic substance enter the bloodstream.
Explanation:
hope it helps.
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
Answer:
D. C₄H₁₀ and C₂H₅
<h2>
What is a empirical formula?</h2>
A chemical formula indicating the elements of a compound and their relative proportions, as (CH₂O)n.
Since an empirical formula indicates the ratio (proportions) of the elements in the compound, it can be used, along with the molar weight of the compound, to determine the molecular formula.
The empirical formula provides the smallest whole-number ratio among elements or compounds within a molecular compound. A compound is a chemical formed from atoms of different chemical elements.
Hence, Option D is correct.
#SPJ2