1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
2 years ago
8

(x + 1)(x + 2)(x + 1)(3x + 2)

Mathematics
1 answer:
Lapatulllka [165]2 years ago
6 0

Answer:

Is it the full question I mean what does it want next anyway?

But here's your answer :

3x^4 + 14x^3 + 23x^2 + 16x + 4

You might be interested in
e. The seats in a theatre are arranged so that each row accommodates four people more thanthe previous row. If the first row sea
Bezzdna [24]

Answer:

82 seats

Step-by-step explanation:

50+4x(number row - 1)

50+4x(9-1)

50+4x8

50+32

82 seats for the ninth row

6 0
3 years ago
Is 10 L greater or less than 1,000 mL
Tanya [424]
10 L is greater than 1000 ML because , 1 L = 1000 ML<span />
6 0
3 years ago
Write the equation of a circle with a center at (1,-9) and a radius of 12
Andre45 [30]

The equation of the circle is (x - 1)^2 +(y + 9)^2 = 144

<h3>How to determine the circle equation?</h3>

The given parameters are:

Center, (a,b) = (1, -9)

Radius, r = 12

The circle equation is calculated as:

(x - a)^2 + (y- b)^2 = r^2

This gives

(x - 1)^2 +(y + 9)^2 = 12^2

Evaluate the exponent

(x - 1)^2 +(y + 9)^2 = 144

Hence, the equation of the circle is (x - 1)^2 +(y + 9)^2 = 144

Read more about circle equations at:

brainly.com/question/10618691

#SPJ1

8 0
2 years ago
Uestion
Stella [2.4K]

Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JK(\stackrel{x_1}{-1}~,~\stackrel{y_1}{2})\qquad LM(\stackrel{x_2}{2}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JKLM=\sqrt{(~~2 - (-1)~~)^2 + (~~-2 - 2~~)^2} \\\\\\ JKLM=\sqrt{(2 +1)^2 + (-2 - 2)^2} \implies JKLM=\sqrt{( 3 )^2 + ( -4 )^2} \\\\\\ JKLM=\sqrt{ 9 + 16 } \implies JKLM=\sqrt{ 25 }\implies \boxed{JKLM=5}

now, let's check the other path, JM and KL

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JM(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-1})\qquad KL(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JMKL=\sqrt{(~~3 - (-2)~~)^2 + (~~1 - (-1)~~)^2} \\\\\\ JMKL=\sqrt{(3 +2)^2 + (1 +1)^2} \implies JMKL=\sqrt{( 5 )^2 + ( 2 )^2} \\\\\\ JMKL=\sqrt{ 25 + 4 } \implies \boxed{JMKL=\sqrt{ 29 }}

so the red path will be  5~~ + ~~\sqrt{29} ~~ \approx ~~ \blacksquare~~ 10 ~~\blacksquare

3 0
2 years ago
What is 48 times 77 equal
ladessa [460]
3696 is what it equals
5 0
3 years ago
Read 2 more answers
Other questions:
  • One more math question for the night. please show work :0
    7·2 answers
  • Solve for <br> 3t-t-6=t-7
    9·2 answers
  • Determine the value of x for the diagram shown.
    9·2 answers
  • Prove that A is idempotent if and only if AT is idempotent. Getting Started: The phrase "if and only if" means that you have to
    5·1 answer
  • If you wanted to find reasons for why sales are higher on certain days of the week, you would be BEST advised to examine the fac
    10·1 answer
  • (please help asap!)
    14·1 answer
  • Please help with this problem!
    5·1 answer
  • Un curso esta formado por 12 mujeres y 15 hombres ¿cual es la probabilidad de que las personas en el cargo de presidente y visep
    13·1 answer
  • Use the intercepts to graph the equation.<br><br> 7x-5y=35
    15·1 answer
  • PLEASE HELP MEEEEEEEEE
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!