To figure this out we keep in mind two rules
1. A triangles sum of angles is 180
2. An angle of a triangle can not be 0
So the answer is the following
2, 3 & 4
(っ◔◡◔)っ ♥ Hope It Helps ♥
Answer:
Points on the Real number line correspond to Real numbers.The distance between two points is the absolute value of the difference of the corresponding numbers. ... The set of points on any line corresponds to the coordinate .
Step-by-step explanation:
Please mark brainliest and have a great day!
Answer:
27
Step-by-step explanation:
a) The equation of line k is:
![y = -\frac{202}{167}x + \frac{598}{167}](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20%5Cfrac%7B598%7D%7B167%7D)
b) The equation of line j is:
![y = \frac{167}{202}x + \frac{1546}{202}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B167%7D%7B202%7Dx%20%2B%20%5Cfrac%7B1546%7D%7B202%7D)
The equation of a line, in <u>slope-intercept formula</u>, is given by:
![y = mx + b](https://tex.z-dn.net/?f=y%20%3D%20mx%20%2B%20b)
In which:
- m is the slope, which is the rate of change.
- b is the y-intercept, which is the value of y when x = 0.
Item a:
- Line k intersects line m with an angle of 109º, thus:
![\tan{109^{\circ}} = \frac{m_2 - m_1}{1 + m_1m_2}](https://tex.z-dn.net/?f=%5Ctan%7B109%5E%7B%5Ccirc%7D%7D%20%3D%20%5Cfrac%7Bm_2%20-%20m_1%7D%7B1%20%2B%20m_1m_2%7D)
In which
and
are the slopes of <u>k and m.</u>
- Line k goes through points (-3,-1) and (5,2), thus, it's slope is:
![m_1 = \frac{2 - (-1)}{5 - (-3)} = \frac{3}{8}](https://tex.z-dn.net/?f=m_1%20%3D%20%5Cfrac%7B2%20-%20%28-1%29%7D%7B5%20-%20%28-3%29%7D%20%3D%20%5Cfrac%7B3%7D%7B8%7D)
- The tangent of 109 degrees is
![\tan{109^{\circ}} = -\frac{29}{10}](https://tex.z-dn.net/?f=%5Ctan%7B109%5E%7B%5Ccirc%7D%7D%20%3D%20-%5Cfrac%7B29%7D%7B10%7D)
- Thus, the slope of line m is found solving the following equation:
![\tan{109^{\circ}} = \frac{m_2 - m_1}{1 + m_1m_2}](https://tex.z-dn.net/?f=%5Ctan%7B109%5E%7B%5Ccirc%7D%7D%20%3D%20%5Cfrac%7Bm_2%20-%20m_1%7D%7B1%20%2B%20m_1m_2%7D)
![-\frac{29}{10} = \frac{m_2 - \frac{3}{8}}{1 + \frac{3}{8}m_2}](https://tex.z-dn.net/?f=-%5Cfrac%7B29%7D%7B10%7D%20%3D%20%5Cfrac%7Bm_2%20-%20%5Cfrac%7B3%7D%7B8%7D%7D%7B1%20%2B%20%5Cfrac%7B3%7D%7B8%7Dm_2%7D)
![m_2 - \frac{3}{8} = -\frac{29}{10} - \frac{87}{80}m_2](https://tex.z-dn.net/?f=m_2%20-%20%5Cfrac%7B3%7D%7B8%7D%20%3D%20-%5Cfrac%7B29%7D%7B10%7D%20-%20%5Cfrac%7B87%7D%7B80%7Dm_2)
![m_2 + \frac{87}{80}m_2 = -\frac{29}{10} + \frac{3}{8}](https://tex.z-dn.net/?f=m_2%20%2B%20%5Cfrac%7B87%7D%7B80%7Dm_2%20%3D%20-%5Cfrac%7B29%7D%7B10%7D%20%2B%20%5Cfrac%7B3%7D%7B8%7D)
![\frac{167m_2}{80} = \frac{-202}{80}](https://tex.z-dn.net/?f=%5Cfrac%7B167m_2%7D%7B80%7D%20%3D%20%5Cfrac%7B-202%7D%7B80%7D)
![m_2 = -\frac{202}{167}](https://tex.z-dn.net/?f=m_2%20%3D%20-%5Cfrac%7B202%7D%7B167%7D)
Thus:
![y = -\frac{202}{167}x + b](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20b)
It goes through point (-2,6), that is, when
, and this is used to find b.
![y = -\frac{202}{167}x + b](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20b)
![6 = -\frac{202}{167}(-2) + b](https://tex.z-dn.net/?f=6%20%3D%20-%5Cfrac%7B202%7D%7B167%7D%28-2%29%20%2B%20b)
![b = 6 - \frac{404}{167}](https://tex.z-dn.net/?f=b%20%3D%206%20-%20%5Cfrac%7B404%7D%7B167%7D)
![b = \frac{6(167)-404}{167}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B6%28167%29-404%7D%7B167%7D)
![b = \frac{598}{167}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B598%7D%7B167%7D)
Thus. the equation of line k, in slope-intercept formula, is:
![y = -\frac{202}{167}x + \frac{598}{167}](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20%5Cfrac%7B598%7D%7B167%7D)
Item b:
- Lines j and k intersect at an angle of 90º, thus they are perpendicular, which means that the multiplication of their slopes is -1.
Thus, the slope of line j is:
![-\frac{202}{167}m = -1](https://tex.z-dn.net/?f=-%5Cfrac%7B202%7D%7B167%7Dm%20%3D%20-1)
![m = \frac{167}{202}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B167%7D%7B202%7D)
Then
![y = \frac{167}{202}x + b](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B167%7D%7B202%7Dx%20%2B%20b)
Also goes through point (-2,6), thus:
![6 = \frac{167}{202}(-2) + b](https://tex.z-dn.net/?f=6%20%3D%20%5Cfrac%7B167%7D%7B202%7D%28-2%29%20%2B%20b)
![b = \frac{(2)167 + 202(6)}{202}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B%282%29167%20%2B%20202%286%29%7D%7B202%7D)
![b = \frac{1546}{202}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B1546%7D%7B202%7D)
The equation of line j is:
![y = \frac{167}{202}x + \frac{1546}{202}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B167%7D%7B202%7Dx%20%2B%20%5Cfrac%7B1546%7D%7B202%7D)
A similar problem is given at brainly.com/question/16302622
Answer:
![12\dfrac{7}{40}](https://tex.z-dn.net/?f=12%5Cdfrac%7B7%7D%7B40%7D)
Step-by-step explanation:
The given expression is
![\left(9\dfrac{7}{8} + 2\dfrac{4}{5}\right)-\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cleft%289%5Cdfrac%7B7%7D%7B8%7D%20%2B%202%5Cdfrac%7B4%7D%7B5%7D%5Cright%29-%5Cdfrac%7B1%7D%7B2%7D)
We need to find the simplified form of the given expression.
It can be rewritten as
![\left(9+\dfrac{7}{8} + 2+\dfrac{4}{5}\right)-\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cleft%289%2B%5Cdfrac%7B7%7D%7B8%7D%20%2B%202%2B%5Cdfrac%7B4%7D%7B5%7D%5Cright%29-%5Cdfrac%7B1%7D%7B2%7D)
Combine integers and fractions separately.
![(9+2)+(\dfrac{7}{8}+\dfrac{4}{5}-\dfrac{1}{2})](https://tex.z-dn.net/?f=%289%2B2%29%2B%28%5Cdfrac%7B7%7D%7B8%7D%2B%5Cdfrac%7B4%7D%7B5%7D-%5Cdfrac%7B1%7D%7B2%7D%29)
Taking LCM we get
![11+\dfrac{35+32-20}{40}](https://tex.z-dn.net/?f=11%2B%5Cdfrac%7B35%2B32-20%7D%7B40%7D)
![11+\dfrac{47}{40}](https://tex.z-dn.net/?f=11%2B%5Cdfrac%7B47%7D%7B40%7D)
In can be written as
![11+\dfrac{40+7}{40}](https://tex.z-dn.net/?f=11%2B%5Cdfrac%7B40%2B7%7D%7B40%7D)
![11+1+\dfrac{7}{40}](https://tex.z-dn.net/?f=11%2B1%2B%5Cdfrac%7B7%7D%7B40%7D)
![12+\dfrac{7}{40}](https://tex.z-dn.net/?f=12%2B%5Cdfrac%7B7%7D%7B40%7D)
![12\dfrac{7}{40}](https://tex.z-dn.net/?f=12%5Cdfrac%7B7%7D%7B40%7D)
Therefore, the expression
is equivalent to the given expression.