1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
2 years ago
15

How many 4/5are in 1

Mathematics
2 answers:
OverLord2011 [107]2 years ago
6 0

Answer:

If your gonna ask it on groups its one group

natita [175]2 years ago
3 0
There are one 4/5 in 1 cus (1=5/5)
You might be interested in
Solve the inequality -2 &lt; 2n - 7 - 7n <br>plz help ​
Simora [160]

Answer:

n < -1.

Step-by-step explanation:

-2 < 2n - 7 - 7n

-2 < -5n - 7

-5n > 5

n < -1.

3 0
3 years ago
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Write 115.9% as a fraction
Lemur [1.5K]
1 \ \% = \frac{1}{100}\\ \\115.9 \ \%= 115.9 *\frac{1}{100}=\frac{115.9}{100} *\frac{10}{10}=\frac{1159}{1000}


6 0
4 years ago
Read 2 more answers
Please help with these two pictures! I will mark brainliest!
Eva8 [605]
ANSWER:

Question No. 1 -
37°

Question No. 2 -
Angles A and E

STEP-BY-STEP EXPLANATION:

Question No. 1 -

Angle sum of a triangle = 180°

THEREFORE:

Let unknown third angle in each triangle = x

x + 90 + 53 = 180

x = 180 - 90 - 53

x = 37°

Question No. 2 -

Angles A and E are alternate angles on parallel lines. Alternate angles on parallel lines are congruent. Therefore, Angles A and E are congruent.
8 0
3 years ago
Which student correctly describes how to use the count up method to add to 3.85 to find 8 -3.85?
lozanna [386]

Answer:

Zohar correctly describes how to use the count up method

3 0
3 years ago
Read 2 more answers
Other questions:
  • How can I find a?<br> (Trigonometric Ratios)
    6·1 answer
  • Simplify the following expression as much as possible 4^10 divided by 4^10 . 7^0
    10·2 answers
  • 18 divided by 6 multiples by 4-3 +6
    8·1 answer
  • If z is divisible by all the integers from 1 to 5 inclusive,what is the smallest value of z?
    11·1 answer
  • Write the product in its simplest form<br>-3y.3y4<br>Enter the correct answer.​
    15·1 answer
  • 10t = 90 <br><br> i seriously dont know what to put to make it longer anymore bruv
    7·2 answers
  • Complete the explanation of how you would shade a model to show 2 x 2/3
    15·1 answer
  • Simplify and solve for x <br><br>5 (x + 20) = 7x + 30​
    11·2 answers
  • I need help, please and thank you!
    15·2 answers
  • Write -0.37 as a quotient of integers to show that is rational.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!