Answer: First you would divide 60 by 7.5 which will get you 8 that means Alberto ran 8 sets of 7.5 miles essentially. So then you would multiply 8 by 2 to determine how many miles he walked, which would equal 16. So in jogging 60miles he walked 16 miles
Step-by-step explanation:
Complete question is;
A skull cleaning factory cleans animal skulls and other types of animals using flesh eating Beatles. The factory owner started with only 13 adult beetles.
After 35 days, the beetle population grew to 26 adult beetles. How long did it take before the beetle population was 13,000 beetles?
Answer:
349 days.
Step-by-step explanation:
We are given;
Initial amount of adult beetles; A_o = 13
Amount of adult beetles after 35 days; A_35 = 26
Thus can be solved using the exponential formua;
A_t = A_o × e^(kt)
Where A_t is the amount after time t, t is the time and k is a constant.
Plugging in the relevant values;
26 = 13 × e^(35k)
e^(35k) = 26/13
e^(35k) = 2
35k = In 2
35k = 0.6931
k = 0.6931/35
k = 0.0198
Now,when the beetle population is 12000,we can find the time from;
13000 = 13 × e^(k × 0.0198)
e^(k × 0.0198) = 13000/13
e^(k × 0.0198) = 1000
0.0198k = In 1000
0.0198k = 6.9078
k = 6.9078/0.0198
k ≈ 349 days.
Answer:
GH = (5, -3)
Step-by-step explanation:
The horizontal extent of the vector is 5 squares; the vertical extent is 3 squares. H has a lower y-value than G, so the vertical component is -3.
GH = (5, -3)
Answer:
Step-by-step explanation:
(2(6) - 3(10)^2)/(|6 - 10)|
(12 - 300)/|-4|
-288/4 = -72
answer is c
Answer: The answer is 381.85 feet.
Step-by-step explanation: Given that a window is 20 feet above the ground. From there, the angle of elevation to the top of a building across the street is 78°, and the angle of depression to the base of the same building is 15°. We are to calculate the height of the building across the street.
This situation is framed very nicely in the attached figure, where
BG = 20 feet, ∠AWB = 78°, ∠WAB = WBG = 15° and AH = height of the bulding across the street = ?
From the right-angled triangle WGB, we have

and from the right-angled triangle WAB, we have'

Therefore, AH = AB + BH = h + GB = 361.85+20 = 381.85 feet.
Thus, the height of the building across the street is 381.85 feet.