1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady bird [3.3K]
1 year ago
11

7. What is the molarity of the nitrate ion that is found in a solution made by dissolving 6.25g

Chemistry
1 answer:
tekilochka [14]1 year ago
3 0

Answer:

0.271 M NO₃⁻

Explanation:

To find the molarity of the nitrate ion (NO₃⁻), you need to (1) convert grams to moles (via molar mass), then (2) convert moles Al(NO₃)₃ to moles NO₃⁻, then (3) convert mL to L, and then (4) calculate the molarity. When (Al(NO₃)₃) dissolves in water, it dissociates into 3 nitrate ions. The final answer should have 3 sig figs.

(Steps 1 + 2)

Molar Mass (Al(NO₃)₃): 26.982 g/mol + 3(14.007 g/mol) + 9(15.998 g/mol)

Molar Mass (Al(NO₃)₃): 212.985 g/mol

1 Al(NO₃)₃ = 1 Al³⁺ and 3 NO₃⁻

6.25 g Al(NO₃)₃            1 mole               3 moles NO₃⁻
-------------------------  x  -----------------  x   -----------------------  =  0.0880 moles NO₃⁻
                                    212.985 g         1 mole Al(NO₃)₃

(Steps 3 + 4)

325.0 mL / 1,000 = 0.3250 L

Molarity = moles / volume

Molarity = 0.0880 moles / 0.3250 L

Molarity = 0.271 M

You might be interested in
Consider the reaction Mg(s) + I2 (s) → MgI2 (s) Identify the limiting reagent in each of the reaction mixtures below:
Lapatulllka [165]

Answer:

a) Nor Mg, neither I2 is the limiting reactant.

b) I2 is the limiting reactant

c) <u>Mg is the limiting reactant</u>

<u>d) Mg is the limiting reactant</u>

<u>e) Nor Mg, neither I2 is the limiting reactant.</u>

<u>f) I2 is the limiting reactant</u>

<u>g) Nor Mg, neither I2 is the limiting reactant.</u>

<u>h) I2 is the limiting reactant</u>

<u>i) Mg is the limiting reactant</u>

Explanation:

Step 1: The balanced equation:

Mg(s) + I2(s) → MgI2(s)

For 1 mol of Mg we need 1 mol of I2 to produce 1 mol of MgI2

a. 100 atoms of Mg and 100 molecules of I2

We'll have the following equation:

100 Mg(s) + 100 I2(s) → 100MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

b. 150 atoms of Mg and 100 molecules of I2

We'll have the following equation:

150 Mg(s) + 100 I2(s) → 100 MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 100 Mg atoms. There will remain 50 Mg atoms.

There will be produced 100 MgI2 molecules.

c. 200 atoms of Mg and 300 molecules of I2

We'll have the following equation:

200 Mg(s) + 300 I2(s) →200 MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 200 I2 molecules. There will remain 100 I2 molecules.

There will be produced 200 MgI2 molecules.

d. 0.16 mol Mg and 0.25 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.16 mol of I2. There will remain 0.09 mol of I2.

There will be produced 0.16 mol of MgI2.

e. 0.14 mol Mg and 0.14 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.14 mol of Mg and 0.14 mol of I2. there will be produced 0.14 mol of MgI2

f. 0.12 mol Mg and 0.08 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.08 moles of Mg. There will remain 0.04 moles of Mg.

There will be produced 0.08 moles of MgI2.

g. 6.078 g Mg and 63.455 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 6.078 grams / 24.31 g/mol = 0.250 moles

Number of moles I2 = 63.455 grams/ 253.8 g/mol = 0.250 moles

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.250 mol of Mg and 0.250 mol of I2. there will be produced 0.250 mol of MgI2

h. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 2.00 grams/ 253.8 g/mol = 0.00788 moles

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.00788 moles of Mg. There will remain 0.03322 moles of Mg.

There will be produced 0.00788 moles of MgI2.

i. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 20.00 grams/ 253.8 g/mol = 0.0788 moles

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.0411 moles of Mg. There will remain 0.0377 moles of I2.

There will be produced 0.0411 moles of MgI2.

4 0
3 years ago
An 80.0-gram sample of water at 10.0°C absorbs 1680 Joules of heat energy. What is the final temperature of the water? a 50.0°C
ICE Princess25 [194]

Answer:

b)15.0°C

Explanation:

Specific Heat of Water=4.2 J/g°C

This means, that 1 g of Water will take 4.2 J of energy to increase its temperature by 1°C.

∴80 g Water will take 80×4.2 J of energy to increase its temperature by 1°C.

80×4.2 J=336 J

Total Energy Provided=1680 J

The temperature increase=\frac{\textrm{Total energy required}}{\textrm{energy required to increase temperature by one degree}}

Temperature increase=\frac{1680}{336}

=5°C

Initial Temperature =10°C

Final Temperature=Initial + Increase in Temperature

=10+5=15°C

7 0
3 years ago
What chemical reaction involve acid and bases​
svetoff [14.1K]

Answer:

Neutralization reaction

5 0
3 years ago
Read 2 more answers
In order to expand agriculture and urban areas to meet increased demand for growing populations, water supplies often have to be
VMariaS [17]

answer:

lets say we have a big lake with a lot of animals and you want to move the water to somewhere else. A lot of animals and fish, frogs will have to find a new home!

7 0
3 years ago
How does melting order relate to melting point?
KatRina [158]

Answer:

I think A.

Explanation:I say A because of the substance melting the quicking does have the highest melting point because its the highest.

5 0
2 years ago
Other questions:
  • Please answer this question only if you know the answer! 30 points and brainliest!
    5·2 answers
  • Which of the following statements explain what is currently known about Earth’s oceans? Select all that apply.
    15·2 answers
  • Which words or phrases describe the outer planets?
    13·1 answer
  • Igneous rock can _____ to form metamorphic rock.
    12·2 answers
  • What is the freezing point of a 2.00 m solution with phenol as<br> the solvent?
    15·1 answer
  • Which of the following is physical change!?
    5·1 answer
  • Part A<br> Identify the problem that a car bumper is meant to address.
    6·1 answer
  • Hydrogen fluoride reacts with ammonia in an acid-base reaction:
    14·1 answer
  • Can anyone help me with this?
    7·1 answer
  • What is the main difference between sexual and asexual reproduction
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!