There are 900 calories in 180 crackers. Write 60 calories for 12 crackers as 60/12. Then make x/180, showing that there are 180 crackers with an unknown amount of calories. Cross multiply 60 and 180, which is 10,800. Divide 10,800 by 12, and you get 900.
Answer:
x^2 + 2xy + y ^2
Step-by-step explanation:
A = a^2
a = x + y
(x + y) + (x + y)
x^2 + xy + xy + y^2
x^2 + 2xy + y ^2
Answer:
Top left
Step-by-step explanation:
We can plug in the y intercept to find which graph has the correct one.
x = 0 is y intercept
Thus

At this point we known the y intercept is -3 so both graph in the left is considerable.
Notice that the base is the negative, thus the graph would goes down. Therefore the top left would be correct.
Answer:
![4\sqrt[3]{2}x(\sqrt[3]{y}+3xy\sqrt[3]{y} )](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B2%7Dx%28%5Csqrt%5B3%5D%7By%7D%2B3xy%5Csqrt%5B3%5D%7By%7D%20%29)
Step-by-step explanation:
Let's start by breaking down each of the radicals:
![\sqrt[3]{16x^3y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E3y%7D)
Since we're dealing with a cube root, we'd like to pull as many perfect cubes out of the terms inside the radical as we can. We already have one obvious cube in the form of
, and we can break 16 into the product 8 · 2. Since 8 is a cube root -- 2³, to be specific, we can reduce it down as we simplify the expression. Here our our steps then:
![\sqrt[3]{16x^3y}\\=\sqrt[3]{2\cdot8\cdot x^3\cdot y}\\=\sqrt[3]{2} \sqrt[3]{8} \sqrt[3]{x^3} \sqrt[3]{y} \\=\sqrt[3]{2} \cdot2x\cdot \sqrt[3]{y} \\=2x\sqrt[3]{2}\sqrt[3]{y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E3y%7D%5C%5C%3D%5Csqrt%5B3%5D%7B2%5Ccdot8%5Ccdot%20x%5E3%5Ccdot%20y%7D%5C%5C%3D%5Csqrt%5B3%5D%7B2%7D%20%5Csqrt%5B3%5D%7B8%7D%20%5Csqrt%5B3%5D%7Bx%5E3%7D%20%5Csqrt%5B3%5D%7By%7D%20%5C%5C%3D%5Csqrt%5B3%5D%7B2%7D%20%5Ccdot2x%5Ccdot%20%5Csqrt%5B3%5D%7By%7D%20%5C%5C%3D2x%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7By%7D)
We can apply this same technique of "extracting cubes" to the second term:
![\sqrt[3]{54x^6y^5} \\=\sqrt[3]{2\cdot27\cdot (x^2)^3\cdot y^3\cdot y^2} \\=\sqrt[3]{2}\sqrt[3]{27} \sqrt[3]{(x^2)^3} \sqrt[3]{y^3} \sqrt[3]{y^2}\\=\sqrt[3]{2}\cdot 3\cdot x^2\cdot y \cdot \sqrt[3]{y^2} \\=3x^2y\sqrt[3]{2} \sqrt[3]{y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%20%5C%5C%3D%5Csqrt%5B3%5D%7B2%5Ccdot27%5Ccdot%20%28x%5E2%29%5E3%5Ccdot%20y%5E3%5Ccdot%20y%5E2%7D%20%5C%5C%3D%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7B27%7D%20%5Csqrt%5B3%5D%7B%28x%5E2%29%5E3%7D%20%5Csqrt%5B3%5D%7By%5E3%7D%20%5Csqrt%5B3%5D%7By%5E2%7D%5C%5C%3D%5Csqrt%5B3%5D%7B2%7D%5Ccdot%203%5Ccdot%20x%5E2%5Ccdot%20y%20%5Ccdot%20%5Csqrt%5B3%5D%7By%5E2%7D%20%5C%5C%3D3x%5E2y%5Csqrt%5B3%5D%7B2%7D%20%5Csqrt%5B3%5D%7By%7D)
Replacing those two expressions in the parentheses leaves us with this monster:
![2(2x\sqrt[3]{2}\sqrt[3]{y})+4(3x^2y\sqrt[3]{2} \sqrt[3]{y})](https://tex.z-dn.net/?f=2%282x%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7By%7D%29%2B4%283x%5E2y%5Csqrt%5B3%5D%7B2%7D%20%5Csqrt%5B3%5D%7By%7D%29)
What can we do with this? It seems the only sensible thing is to look for terms to factor out, so let's do that. Both terms have the following factors in common:
![4, \sqrt[3]{2} , x](https://tex.z-dn.net/?f=4%2C%20%5Csqrt%5B3%5D%7B2%7D%20%2C%20x)
We can factor those out to give us a final, simplified expression:
![4\sqrt[3]{2}x(\sqrt[3]{y}+3xy\sqrt[3]{y} )](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B2%7Dx%28%5Csqrt%5B3%5D%7By%7D%2B3xy%5Csqrt%5B3%5D%7By%7D%20%29)
Not that this is the same sum as we had at the beginning; we've just extracted all of the cube roots that we could in order to rewrite it in a slightly cleaner form.
Answer:
The coordinates of Jedd's house is (-5, 0)
Step-by-step explanation:
Given;
Location of Holli's House = (−1, 4)
Location of fast food restaurant = (−3, 2)
To Find:
The coordinate of Jedd's house.
Solution:
If the distance between the two points
and
is divided by the point (x,y) in the ratio of m : n then


Hollis house is located at (-1 , 4)
So, 
She walks in a straight line to get to Jedds house
The restaurant is located at (-3 , 2) and partitions the way from
(x , y) = (-3 , 2)
The ratio of Hollis house to Jedds house is 1 : 1
(m : n) = 1 : 2
Lets consider that Jedds house is located at 
Then
will be






Now
will be






∴ The coordinates of Jedd's house is (-5, 0)