Answer:
Using linkedlist on C++, we have the program below.
Explanation:
#include<iostream>
#include<cstdlib>
using namespace std;
//structure of linked list
struct linkedList
{
int data;
struct linkedList *next;
};
//print linked list
void printList(struct linkedList *head)
{
linkedList *t=head;
while(t!=NULL)
{
cout<<t->data;
if(t->next!=NULL)
cout<<" -> ";
t=t->next;
}
}
//insert newnode at head of linked List
struct linkedList* insert(struct linkedList *head,int data)
{
linkedList *newnode=new linkedList;
newnode->data=data;
newnode->next=NULL;
if(head==NULL)
head=newnode;
else
{
struct linkedList *temp=head;
while(temp->next!=NULL)
temp=temp->next;
temp->next=newnode;
}
return head;
}
void multiplyOddPosition(struct linkedList *head)
{
struct linkedList *temp=head;
while(temp!=NULL)
{
temp->data = temp->data*10; //multiply values at odd position by 10
temp = temp->next;
//skip odd position values
if(temp!= NULL)
temp = temp->next;
}
}
int main()
{
int n,data;
linkedList *head=NULL;
// create linked list
head=insert(head,20);
head=insert(head,5);
head=insert(head,11);
head=insert(head,17);
head=insert(head,23);
head=insert(head,12);
head=insert(head,4);
head=insert(head,21);
cout<<"\nLinked List : ";
printList(head); //print list
multiplyOddPosition(head);
cout<<"\nLinked List After Multiply by 10 at odd position : ";
printList(head); //print list
return 0;
}
<h3><u>The distance between the two stations is</u><u> </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>

Explanation:
<h2>Given:</h2>








<h2>Required:</h2>
Distance from Station A to Station B

<h2>Equation:</h2>




<h2>Solution:</h2><h3>Distance when a = 0.4 m/s²</h3>
Solve for 





Solve for 




Solve for 





<h3>Distance when a = 0 m/s²</h3>



Solve for 





Solve for 




Solve for 





<h3>Distance when a = -0.8 m/s²</h3>



Solve for 






Solve for 




Solve for 





<h3>Total Distance from Station A to Station B</h3>





<h2>Final Answer:</h2><h3><u>The distance between the two stations is </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>
Answer:
A) ν = 0.292
B) ν = 0.381
Explanation:
Poisson's ratio = - (Strain in the direction of the load)/(strain in the direction at right angle to the load)
In axial tension, the direction of the load is in the length's direction and the direction at right angle to the load is the side length
Strain = change in length/original length = (Δy)/y or (Δx)/x or (ΔL/L)
A) Strain in the direction of the load = (2.49946 - 2.5)/2.5 = - 0.000216
Strain in the direction at right angle to the load = (7.20532 - 7.2)/7.2 = 0.0007389
Poisson's ratio = - (-0.000216)/(0.0007389) = 0.292
B) Strain in the direction of the load = (2.09929 - 2.1)/2.1 = - 0.0003381
Strain in the direction at right angle to the load = (5.30470 - 5.3)/5.3 = 0.0008868
Poisson's ratio = - (-0.0003381)/(0.0008868) = 0.381