1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NARA [144]
3 years ago
11

A train starts from rest at station A and accelerates at 0.4 m/s^2 for 60 s. Afterwards it travels with a constant velocity for

25 min. It then decelerates at 0.8 m/s^2 until it is brought to rest at station B.
Determine the distance between the stations. ?s^Delta s = _______.
Engineering
1 answer:
mash [69]3 years ago
7 0
<h3><u>The distance between the two stations is</u><u> </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>

\\

Explanation:

<h2>Given:</h2>

a_1 \:=\:0.4\:m/s²

t_1 \:=\:60\:s

v_{i1} \:=\:0\:m/s

a_2 \:=\:0\:m/s²

t_2 \:=\:25\:min\:=\:1500\:s

a_3 \:=\:-0.8\:m/s²

v_{f3} \:=\:0\:m/s

\\

<h2>Required:</h2>

Distance from Station A to Station B

\\

<h2>Equation:</h2>

a\:=\:\frac{v_f\:-\:v_i}{t}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v\:=\:\frac{d}{t}

\\

<h2>Solution:</h2><h3>Distance when a = 0.4 m/s²</h3>

Solve for v_{f1}

a\:=\:\frac{v_f\:-\:v_i}{t}

0.4\:m/s²\:=\:\frac{v_f\:-\:0\:m/s}{60\:s}

24\:m/s\:=\:v_f\:-\:0\:m/s

v_f\:=\:24\:m/s

\\

Solve for v_{ave1}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v_{ave}\:=\:\frac{0\:m/s\:+\:24\:m/s}{2}

v_{ave}\:=\:12\:m/s

\\

Solve for d_1

v\:=\:\frac{d}{t}

12\:m/s\:=\:\frac{d}{60\:s}

720\:m\:=\:d

d_1\:=\:720\:m

\\

<h3>Distance when a = 0 m/s²</h3>

v_{f1}\:=\:v_{i2}

v_{i2}\:=\:24\:m/s

\\

Solve for v_{f2}

a\:=\:\frac{v_f\:-\:v_i}{t}

0\:m/s²\:=\:\frac{v_f\:-\:24\:m/s}{1500\:s}

0\:=\:v_f\:-\:24\:m/s

v_f\:=\:24\:m/s

\\

Solve for v_{ave2}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v_{ave}\:=\:\frac{24\:m/s\:+\:24\:m/s}{2}

v_{ave}\:=\:24\:m/s

\\

Solve for d_2

v\:=\:\frac{d}{t}

24\:m/s\:=\:\frac{d}{1500\:s}

36,000\:m\:=\:d

d_2\:=\:36,000\:m

\\

<h3>Distance when a = -0.8 m/s²</h3>

v_{f2}\:=\:v_{i3}

v_{i3}\:=\:24\:m/s

\\

Solve for v_{f3}

a\:=\:\frac{v_f\:-\:v_i}{t}

-0.8\:m/s²\:=\:\frac{0\:-\:24\:m/s}{t}

(t)(-0.8\:m/s²)\:=\:-24\:m/s

t\:=\:\frac{-24\:m/s}{-0.8\:m/s²}

t\:=\:30\:s

\\

Solve for v_{ave3}

v_{ave}\:=\:\frac{v_i\:+\:v_f}{2}

v_{ave}\:=\:\frac{24\:m/s\:+\:0\:m/s}{2}

v_{ave}\:=\:12\:m/s

\\

Solve for d_3

v\:=\:\frac{d}{t}

12\:m/s\:=\:\frac{d}{30\:s}

360\:m\:=\:d

d_3\:=\:360\:m

\\

<h3>Total Distance from Station A to Station B</h3>

d\:= \:d_1\:+\:d_2\:+\:d_3

d\:= \:720\:m\:+\:36,000\:m\:+\:360\:m

d\:= \:37,080\:m

d\:= \:37.08\:km

\\

<h2>Final Answer:</h2><h3><u>The distance between the two stations is </u><u>3</u><u>7</u><u>.</u><u>0</u><u>8</u><u> km</u></h3>
You might be interested in
A coil having resistance of 7 ohms and inductance of 31.8 mh is connected to 230v,50hz supply.calculate 1. The circuit current 2
lora16 [44]

(1) The current in the circuit is 18.87 A,

(2) The phase angle is 54.97°

(3) The power factor is 0.574

(4) The power consumed is 2491.2 W

(1) To calculate the current in the circuit, first, we need to find the overall impedance of the circuit.

We can calculate the overall impendence of the circuit using the formula below.

  • Z = √[R²+(2πfL)²]........................ Equation 1

Where:

  • R = resistance of the coil
  • f = Frequency
  • L = Inductance of the coil
  • Z = Overall impedance of the circuit

From the question,

Given:

  • R = 7 ohms
  • L = 31.8 mH = 0.0318 H
  • f = 50 Hz
  • π = 3.14

Substitute these values into equation 1

  • Z = √[7²+(2×3.14×50×0.0318)²]
  • Z = √(49+99.7)
  • Z = √(148.7)
  • Z = 12.19 ohms.

Therefore we use the formula below to calculate the current in the circuit.

  • I = V/Z.................. Equation 2

Where:

  • V = Voltage
  • I = current in the circuit.

Given:

  • V = 230 V.

Substitute into equation 2

  • I = 230/12.19
  • I = 18.87 A

(2) To calculate the phase angle, we use the formula below.

  • ∅ = tan⁻¹(2πfL/R)............... Equation 3

Where:

  • ∅ = Phase angle.


Substitute into equation 3

  • ∅ = tan⁻¹(2×3.14×50×0.0318/7)
  • ∅ = tan⁻¹(9.9852/7)
  • ∅ = tan⁻¹(1.426)
  • ∅ = 54.97°

(3) To calculate the power factor, we use the formula below.

  • pf = cos∅............ Equation 4

Where:

  • pf = power factor.

Substitute the value of ∅ into equation 4

  • pf = cos(54.97°)
  • pf = 0.574.

(4) And Finally to calculate the power consumed we use the formula below.

  • P = V×I×pf................ Equation 5

Where:

  • P = The power consumed

Substitute the values into equation 5

  • P = 230(18.87)(0.574)
  • P = 2491.22 W


Hence, (1) The current in the circuit is 18.87 A, (2) The phase angle is 54.97° (3) The power factor is 0.574 (4) The power consumed is 2491.2 W

Learn more about Impedance here: brainly.com/question/13134405

5 0
2 years ago
Quốc gia được cấu thành từ mấy yếu tố
kirill [66]
Về phương diện công pháp quốc tế thì một chủ thể được xem là quốc gia khi có đầy đủ các yếu tố sau: lãnh thổ, dân cư và có chính quyền. Quốc gia là chủ thể quan trọng của quan hệ pháp luật quốc tế.
8 0
3 years ago
A full-scale working model used to test a design solution by making actual observations and necessary adjustments.
zavuch27 [327]
The answer is prototype, or the first choice. hope this helps (:
3 0
3 years ago
A closed tank contains ethyl alcohol to a depth of 66 ft. Air at a pressure of 23 psi fills the gap at the top of the tank. Dete
irina1246 [14]

Answer:

639.4psi

Explanation:

Pressure at the closed valve = Air pressure+ (density*gravity*height)

=23psi+(49.27lb/ft^3*32.17ft/s^2*56ft^3)

=23psi+88760.89psft

=23psi+(88760.89/144)psi

=23+616.4

=639.4psi

3 0
3 years ago
A cylindrical specimen of a hypothetical metal alloy is stressed in compression. If its original and final diameters are 19.636
luda_lava [24]

Answer:

The original length of the specimen is found to be 76.093 mm.

Explanation:

From the conservation of mass principal, we know that the volume of the specimen must remain constant. Therefore, comparing the volumes of both initial and final state as state 1 and state 2:

Initial Volume = Final Volume

πd1²L1/4 = πd2²L2/4

d1²L1 = d2²L2

L1 = d2²L2/d1²

where,

d1 = initial diameter = 19.636 mm

d2 = final diameter = 19.661 mm

L1 = Initial Length = Original Length = ?

L2 = Final Length = 75.9 mm

Therefore, using values:

L1 = (19.661 mm)²(75.9 mm)/(19.636 mm)²

<u>L1 = 76.093 mm</u>

5 0
3 years ago
Other questions:
  • 4. A person is standing 4 miles east from his house. He travels 2 miles east. a. Calculate the initial displacement. b. Calculat
    13·1 answer
  • A distillation column with a partial reboiler and a total condenser is being used to separate a mixture of benzene, toluene, and
    6·1 answer
  • The lid on a pressure vessel is held down with 10 bolts that pass through the lid and a flange on the pressure vessel (similar t
    6·1 answer
  • A. The temperature of a system is measured to be 75 °F. Express this temperature in °C, K, and R.
    9·1 answer
  • The following program includes fictional sets of the top 10 male and female baby names for the current year. Write a program tha
    9·2 answers
  • N2 flows through an insulated horizontal tube at steady state. With an inlet temperature of 150°C and a velocity change from 2 m
    11·1 answer
  • Explain by Research how a basic generator works ? using diagram<br>​
    8·1 answer
  • When the electrical connection to the alternator from the battery is not tight, it can cause?
    7·1 answer
  • What is the definition of gross axle weight rating?.
    5·1 answer
  • Traveling a average speed at 55mph how many miles will you travel in9 hours
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!