Answer:
Each intercept corresponds to a zero of the polynomial function and every zero yields a factor.
Step-by-step explanation:
Each intercept corresponds to a zero of the polynomial function and every zero yields a factor, so we can now write the polynomial in factored form. Graphs behave differently at various intercepts. Sometimes, the graph will cross over the horizontal axis at an intercept. Other times, the graph will touch the horizontal axis and bounce off.
The answer is 223.75 because you multiply 12.5 and 17.9
The answer is C because you can have a triangle with 5,9,n 5,10,n 9,10,n and 5,10,9
The reason why is because the sum of two sides is always larger than the value of the third side.
I hope that this helps.
Answer:
![\large\boxed{\sqrt{56x^{17}}=2x^8\sqrt{14x}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Csqrt%7B56x%5E%7B17%7D%7D%3D2x%5E8%5Csqrt%7B14x%7D%7D)
Step-by-step explanation:
![Domain:\ x\geq0\\\\\sqrt{56x^{17}}=\sqrt{4\cdot14\cdot x^{16+1}}\\\\\text{use}\ a^n\cdot a^m=a^{n+m}\\\\=\sqrt{4\cdot14\cdot x^{16}\cdot x^1}\\\\\text{use}\ \sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\\\=\sqrt4\cdot\sqrt{14}\cdot\sqrt{x^{16}}\cdot\sqrt{x}=2\cdot\sqrt{14}\cdot\sqrt{x^{8\cdot2}}\cdot\sqrt{x}\\\\\text{use}\ (a^n)^m=a^{nm}\\\\=2\cdot\sqrt{14}\cdot\sqrt{(x^8)^2}\cdot\sqrt{x}\\\\\text{use}\ \sqrt{a^2}=a\ \text{for}\ a\geq0\\\\=2\cdot\sqrt{14}\cdot x^8\cdot\sqrt{x}=2x^8\sqrt{14x}](https://tex.z-dn.net/?f=Domain%3A%5C%20x%5Cgeq0%5C%5C%5C%5C%5Csqrt%7B56x%5E%7B17%7D%7D%3D%5Csqrt%7B4%5Ccdot14%5Ccdot%20x%5E%7B16%2B1%7D%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20a%5En%5Ccdot%20a%5Em%3Da%5E%7Bn%2Bm%7D%5C%5C%5C%5C%3D%5Csqrt%7B4%5Ccdot14%5Ccdot%20x%5E%7B16%7D%5Ccdot%20x%5E1%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%5Csqrt%7Bab%7D%3D%5Csqrt%7Ba%7D%5Ccdot%5Csqrt%7Bb%7D%5C%5C%5C%5C%3D%5Csqrt4%5Ccdot%5Csqrt%7B14%7D%5Ccdot%5Csqrt%7Bx%5E%7B16%7D%7D%5Ccdot%5Csqrt%7Bx%7D%3D2%5Ccdot%5Csqrt%7B14%7D%5Ccdot%5Csqrt%7Bx%5E%7B8%5Ccdot2%7D%7D%5Ccdot%5Csqrt%7Bx%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%3D2%5Ccdot%5Csqrt%7B14%7D%5Ccdot%5Csqrt%7B%28x%5E8%29%5E2%7D%5Ccdot%5Csqrt%7Bx%7D%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%5Csqrt%7Ba%5E2%7D%3Da%5C%20%5Ctext%7Bfor%7D%5C%20a%5Cgeq0%5C%5C%5C%5C%3D2%5Ccdot%5Csqrt%7B14%7D%5Ccdot%20x%5E8%5Ccdot%5Csqrt%7Bx%7D%3D2x%5E8%5Csqrt%7B14x%7D)