Answer:
1296 different outcomes
Step-by-step explanation:
Each cube has 6 possible values (from 1 to 6), and for each additional cube rolled, we have 6 more possible values, and the final number of different outcomes is the product of all the number of possible values for each cube.
So, if we roll the cube four times, the total number of different outcomes is:
6 * 6 * 6 * 6 = 1296
We have 1296 different outcomes from rolling the six sided cube four times.
A is the answer because I did befor
<span> (x + 3) • (x - 12)
</span>
The first term is, <span> <span>x2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -9x </span> its coefficient is <span> -9 </span>.
The last term, "the constant", is <span> -36 </span>
Step-1 : Multiply the coefficient of the first term by the constant <span> <span> 1</span> • -36 = -36</span>
Step-2 : Find two factors of -36 whose sum equals the coefficient of the middle term, which is <span> -9 </span>.
<span><span> -36 + 1 = -35</span><span> -18 + 2 = -16</span><span> -12 + 3 = -9 That's it</span></span>
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -12 and 3
<span>x2 - 12x</span> + 3x - 36
Step-4 : Add up the first 2 terms, pulling out like factors :
x • (x-12)
Add up the last 2 terms, pulling out common factors :
3 • (x-12)
Step-5 : Add up the four terms of step 4 :
(x+3) • (x-12)
Which is the desired factorization
Final result :<span> (x + 3) • (x - 12)</span>
Answer:
0.575
Step-by-step explanation: