We know that
2π/3 radians-------> convert to degrees-----> 2*180/3---> 120°
120°=90°+30°
Part a) Find <span>sin(2π/3)
</span>sin(2π/3)=sin (90°+30°)
we know that
sin (A+B)=sin A*cos B+cos A*sin B
so
sin (90°+30°)=sin 90*cos 30+cos 90*sin 30
sin 90=1
cos 30=√3/2
cos 90=0
sin 30=1/2
sin (90°+30°)=1*√3/2+0*1/2-----> √3/2
the answer part a) is
sin(2π/3)=√3/2
Part b) Find cos (2π/3)
cos (2π/3)=cos (90°+30°)
we know that
cos (A+B)=cos A*cos B-sin A*sin B
so
cos (90°+30°)=cos 90*cos 30-sin 90*sin 30
sin 90=1
cos 30=√3/2
cos 90=0
sin 30=1/2
cos (90°+30°)=0*√3/2-1*1/2----> -1/2
the answer part b) is
cos (2π/3)=-1/2
So #1 you're lazy like me. But
1: x=1
2. No solution
3: x= -4/-3
4: 46=13 false
5: 37=-37 false
Distribute: 3x+6+4=5x+7
Simplify: 3x+10=5x+7
Subtract 3x from both sides: 10=2x + 7
Subtract 7 from both sides: 3=2x
Divide by 2: x=3/2
x=3/2
Answer:
2
Step-by-step explanation:
It is the only one that makes sense
Perimeter=2L+2W, in this case L=80+2(25) and W=170+2(25) so
P=2(L+W)=2(80+50+170+50)
P=2(350)=700m