Since each hour is 3/8 of a tone then, namely how many times does 3/8 go into 24? well, is just their quotient.
Answer:
El ancho del río es 59.9 metros.
Step-by-step explanation:
El ancho del río lo podemos calcular con la siguiente relación trigonométrica asumiendo que la torre forma un triángulo rectángulo con el río:

En donde:
CA: es el cateto adyacente = Altura de la torre = 28.2 m
CO: es el cateto opuesto = ancho del río =?
θ: es el ángulo adyacente a CA
Dado que el ángulo de depresión (25.2°) está ubicado fuera de la parte superior de la hipotenusa del triángulo que forma la torre con la orilla opuesta del río, debemos calcular el ángulo interno (θ) como sigue:

Ahora, el ancho del río es:

Por lo tanto, el ancho del río es 59.9 metros.
Espero que te sea de utilidad!
Doubt --!!
Where is your question!??????
Answer:
5:40
Step-by-step explanation:
This is a problem involving the least common difference.
If you know that the red and blue trains left at the same time at 5, you know that another red train will leave at 5:08. Another blue train at 5:10.
The way to solve this will be to write out the factors of 8 and 10 and find the smallest number that they overlap.
Red:
8, 16, 24, 32, 40, 48, 56, 64, 72, 80
Blue:
10, 20, 30, 40
You see that after 40 mnutes, they are both leaving the station again. After 40 minutes, at 5:40, they are both leaving.
First, we have to find the length of each side of triangle. Equilateral triangle means 3 sides r in same length, so each side will be 21 ÷ 3 = 7
Now we need to calculate the height of the triangle. We can do this by Pythagoras theorem
Let the height be h
(7/2)^2 + x^2 = 7^2
The area should be 6.0621778265
Or u can say 6.06 corrected to 3 sig fig