We don't need to graph the line. All we have to do is use our slope formula.
Answer is provided in the image attached.
Answer:
<h3>Graph 3</h3>
Line starting at x = -2
- <u>Domain</u>: x ≥ -2
- <u>Range</u>: y ≥ 0
<h3>Graph 4</h3>
Vertical line
- <u>Domain</u>: x = 3
- <u>Range</u>: y = any real number
<h3>Graph 5</h3>
Quadratic function with negative leading coefficient and max value of 3
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≤ 3
<h3>Graph 6</h3>
Curve with non-negative domain and min value of -2
- <u>Domain</u>: x ≥ 0
- <u>Range</u>: y ≥ -2
<h3>Graph 7</h3>
Line with no restriction
- <u>Domain</u>: x = any real number
- <u>Range</u>: y = any real number
<h3>Graph 8</h3>
Quadratic function with positive leading coefficient and min value of 4
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≥ 4
<h3>Graph 9</h3>
Parabola with restriction at x = -4
- <u>Domain</u>: x = any real number except -4
- <u>Range</u>: y = any real number
<h3>Graph 10</h3>
Square root function with star point (2, 0)
- <u>Domain</u>: x ≥ 2
- <u>Range</u>: y ≥ 0
Answer:
Step-by-step explanation:
First, you want to establish your equations.
L=7W-2
P=60
This is what we already know. To find the width, we have to plug in what we know into P=2(L+W), our equation to find perimeter.
60=2(7W-2+W)
Now that we only have 1 variable, we can solve.
First, distribute the 2.
60=14W-4+2W
Next, combine like terms.
60=16W-4
Then, add four to both sides.
64=16W
Lastly, divide both sides by 16
W=4
To find the length, we plug in our width.
7W-2
7(4)-2
28-2
L=26