To solve the problem we need to know about depreciation.
<h2>Formula of Depreciation</h2>
The formula of depreciation is given as,

where,
A is the value of an object after t years of time,
P is the value of the object at the beginning, and
r is the rate of depreciation.
The value of the car after 11 years is $4,603.81.
<h2>
Explanation</h2>
Given to us
- Cost of Car at the beginning, p = $20,000
- Rate of depreciation, r = 12.5%
- Time, t = 11 years
<h3>Value of the car after 11 years</h3>
Substituting the values in the formula of depreciation,

Value of the car after 11 years = 

Hence, the value of the car after 11 years is $4,603.81.
Learn more about Depreciation:
brainly.com/question/3023490