Answer:
26
Step-by-step explanation:
[(7+3)5-4]/2+3
-To solve this equation you have to use PEMDAS
P- Parentheses
E- Exponents
M- Multiplication
D- Division
A- Addition
S- Subtraction-
- With MD and AS you work left to right of the equation since they are in the same spot. (PE[MD][AS])
Step 1) [(10)5-4]/2+3
- First you do "P," parentheses, so you add 7+3=10
Step 2) [50-4]/2+3
- Next you do "M," multiplication, and multiply 10x5=50
Step 3) [46]/2+3
- Then you do "S," subtraction, and subtract 50-4=46
(FYI: Steps 1-3 were still in the parentheses. We had to start with the parentheses in the parentheses, work PEMDAS, and now we are out of the parentheses and have to work PEMDAS on the rest of the problem.)
Step 4) 23+3
- Now we do "D," division, and divide 46/2=23
Step 5) 23+3=6
- Finally we do "A," addition, and add 23+3=26 so the answer is 26
(FYI: "/" means division)
Answer:
What are you asking?
Step-by-step explanation:
Answer:
t = 6 km/hour
And, J would be 4 km per hour
Step-by-step explanation:
Let us assume the speed of Tom be T
And, the Speed of Jim be J
Given that
T - J = 2 km /hr ...........(i)
After 3 hours distance between them = 30 km
As they are walking in the opposite direction
Thus,
Net speed =T + J
L ÷ (T+J) = 3
30 ÷ (T+J) = 3
T +J =10 ..............(2)
After solving these two equations
2T = 12
t = 6 km/hour
And, J would be 4 km per hour
Well this is simple a calculator type problem...but if you are curious as the the algorithm used by simple calculators and such...
They use a Newtonian approximation until it surpasses the precision level of the calculator or computer program..
A newtonian approximation is an interative process that gets closer and closer to the actual answer to any mathematical problem...it is of the form:
x-(f(x)/(df/dx))
In a square root problem you wish to know:
x=√n where x is the root and n is the number
x^2=n
x^2-n=0
So f(x)=x^2-n and df/dx=2x so using the definition of the newton approximation you have:
x-((x^2-n)/(2x)) which simplifies further to:
(2x^2-x^2+n)/(2x)
(x^2+n)/(2x), where you can choose any starting value of x that you desire (though convergence to an exact (if possible) solution will be swifter the closer xi is to the actual value x)
In this case the number, n=95.54, so a decent starting value for x would be 10.
Using this initial x in (x^2+95.54)/(2x) will result in the following iterative sequence of x.
10, 9.777, 9.774457, 9.7744565, 9.7744565066299210578124802523397
The calculator result for my calc is: 9.7744565066299210578124802523381
So you see how accurate the newton method is in just a few iterations. :P
Answer:
1.2
Step-by-step explanation:
Because the probability cannot be over 1 (assuming 1 is 100%) you can't have a 120% chance.