Answer:
3 percent
Step-by-step explanation:
convert to seconds
960 seconds to 930 seconds
30 seconds ÷ 960=3 per cent
Answer:
<h2>
<em><u>5</u></em><em><u> </u></em><em><u>Feet</u></em></h2>
Reason:
<em>From</em><em> </em><em>the</em><em> </em><em>graph</em><em> </em><em>you</em><em> </em><em>can</em><em> </em><em>clearl</em><em>y</em><em> </em><em>see</em><em> </em><em>that</em><em> </em><em>the </em><em>i</em><em>nitial</em><em> </em><em>posi</em><em>tion</em><em> </em><em>of</em><em> </em><em>rock</em><em> </em><em>was</em><em> </em><em>5</em><em> </em><em>feet</em><em> </em><em>above </em><em>as</em><em> </em><em>compa</em><em>red</em><em> </em><em>to</em><em> </em><em>its</em><em> </em><em>final</em><em> </em><em>position</em><em> </em><em>when</em><em> </em><em>it</em><em> </em><em>was</em><em> </em><em>throw</em><em>n</em><em> </em><em>in</em><em> </em><em>water</em><em>.</em>
The question is, "how many ways ...".
There are as many ways to solve a math problem as you can think of. (Some are shorter or easier than others.)
Essentially, an infinite number.
(c/b) - x = 2d
(c/b) = 2d + x
c = b(2d + x)
c = 2db + bx
ac + bd = x
ac = x - bd
c = (x - bd) / a OR c = (x/a) - (bd/a)
<em>Note:</em>
<em>Your first question is missing the y-intercept, so I am solving the 2nd question. You would still get your concept clear because the procedure to solve each of the questions is the same.</em>
Question 2
Answer:
The equation in the standard form is:
Please also check the attached graph.
Step-by-step explanation:
We know that the equation in the standard form is
Ax + By = C
where x and y are variables and A, B and C are constants
Given
To determine
- Write the equation in the standard form
We know that the slope-intercept form of the line equation

where
In our case:
substituting m = -2/3 and y-intercept b = -4 in the slope-intercept of the line equation
y = mx+b
y = -2/3x + (-4)
y = -2/3x - 4
Writing the equation in the standard form
2/3x + y = -4
Therefore, the equation in the standard form is:
Please also check the attached graph.