(x-4)/10=7/5
x-4=70/5
x-4=14
x=18
here you go, practice it once or twice. good luck
Answer:
The solution of the system of equations is, (1,-1,2)
Step-by-step explanation:
Given system equation;
x + 5y - 3z = -10
-5x + 6y – 5z = -21
-x + 8y - 8z = -25
Matrix form is written as;
![\left[\begin{array}{ccc}1&5&-3\\-5&6&-5\\-1&8&-8\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}-10\\-21\\-25\end{array}\right] \\\\\\det. = 1\left[\begin{array}{cc}\\6&-5\\8&-8\end{array}\right] -5\left[\begin{array}{cc}\\-5&-5\\-1&-8\end{array}\right] -3\left[\begin{array}{cc}\\-5&6\\-1&8\end{array}\right] \\\\\\det. = 1(-8) -5(35)-3(-34)= -8 - 175+ 102 = -81](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%265%26-3%5C%5C-5%266%26-5%5C%5C-1%268%26-8%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-10%5C%5C-21%5C%5C-25%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cdet.%20%3D%201%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C6%26-5%5C%5C8%26-8%5Cend%7Barray%7D%5Cright%5D%20-5%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C-5%26-5%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%5D%20-3%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5C%5C-5%266%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cdet.%20%3D%201%28-8%29%20-5%2835%29-3%28-34%29%3D%20-8%20-%20175%2B%20102%20%3D%20-81)
Cofactor;
![First \ row \left[\begin{array}{cc}+\\ 6&-5\\\ 8&-8\end{array}\right \left\begin{array}{cc}-\\ -5&-5\\-1&-8\end{array}\right \left\begin{array}{cc}+\\-5&6\\-1&8\end{array}\right] = [-8 \ \ -35 \ \ -34]\\\\\\\ Second \ row \left[\begin{array}{cc}-\\ 5&-3\\\ 8&-8\end{array}\right \left\begin{array}{cc}+\\ 1&-3\\-1&-8\end{array}\right \left\begin{array}{cc}-\\1&5\\-1&8\end{array}\right] = [16\ \ -11 \ \ -13]\\\\\\](https://tex.z-dn.net/?f=First%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%206%26-5%5C%5C%5C%208%26-8%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%20-5%26-5%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C-5%266%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5B-8%20%20%5C%20%5C%20-35%20%5C%20%5C%20-34%5D%5C%5C%5C%5C%5C%5C%5C%20Second%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%205%26-3%5C%5C%5C%208%26-8%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%201%26-3%5C%5C-1%26-8%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C1%265%5C%5C-1%268%5Cend%7Barray%7D%5Cright%5D%20%20%3D%20%5B16%5C%20%5C%20-11%20%5C%20%5C%20-13%5D%5C%5C%5C%5C%5C%5C)
![Third \ row \left[\begin{array}{cc}+\\ 5&-3\\\ 6&-5\end{array}\right \left\begin{array}{cc}-\\ 1&-3\\-5&-5\end{array}\right \left\begin{array}{cc}+\\1&5\\-5&6\end{array}\right]= [-7 \ \ 20\ \ 31]](https://tex.z-dn.net/?f=Third%20%5C%20row%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C%205%26-3%5C%5C%5C%206%26-5%5Cend%7Barray%7D%5Cright%20%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-%5C%5C%201%26-3%5C%5C-5%26-5%5Cend%7Barray%7D%5Cright%20%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D%2B%5C%5C1%265%5C%5C-5%266%5Cend%7Barray%7D%5Cright%5D%3D%20%5B-7%20%5C%20%20%5C%2020%5C%20%5C%2031%5D)
![\left[\begin{array}{ccc}-8&-35&-34\\16&-11&-13\\-7&20&31\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%26-35%26-34%5C%5C16%26-11%26-13%5C%5C-7%2620%2631%5Cend%7Barray%7D%5Cright%5D)
![inverse \ matrix =-\frac{1}{81} \left[\begin{array}{ccc}-8&16&-7\\-35&-11&20\\-34&-13&31\end{array}\right] \\\\\\](https://tex.z-dn.net/?f=inverse%20%5C%20matrix%20%3D-%5Cfrac%7B1%7D%7B81%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%2616%26-7%5C%5C-35%26-11%2620%5C%5C-34%26-13%2631%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C)
Solution of the matrix:
![\left[\begin{array}{c}x\\y\\z\end{array}\right] = -\frac{1}{81} \left[\begin{array}{ccc}-8&16&-7\\-35&-11&20\\-34&-13&31\end{array}\right] X \left[\begin{array}{c}-10\\-21\\-25\end{array}\right] = \left[\begin{array}{c}\frac{-8*-10 }{-81 } +\frac{16*-21 }{-81 } + \frac{-7*-25 }{-81 }\\\\\frac{-35*-10 }{-81 } +\frac{-11*-21 }{-81 }+ \frac{20*-25 }{-81 }\\\\\frac{-34*-10 }{-81 }+ \frac{-13*-21 }{-81 }+ \frac{31*-25 }{-81 }\end{array}\right] \\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20-%5Cfrac%7B1%7D%7B81%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%2616%26-7%5C%5C-35%26-11%2620%5C%5C-34%26-13%2631%5Cend%7Barray%7D%5Cright%5D%20%20X%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-10%5C%5C-21%5C%5C-25%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-8%2A-10%20%7D%7B-81%20%7D%20%2B%5Cfrac%7B16%2A-21%20%7D%7B-81%20%7D%20%2B%20%5Cfrac%7B-7%2A-25%20%7D%7B-81%20%7D%5C%5C%5C%5C%5Cfrac%7B-35%2A-10%20%7D%7B-81%20%7D%20%2B%5Cfrac%7B-11%2A-21%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B20%2A-25%20%7D%7B-81%20%7D%5C%5C%5C%5C%5Cfrac%7B-34%2A-10%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B-13%2A-21%20%7D%7B-81%20%7D%2B%20%5Cfrac%7B31%2A-25%20%7D%7B-81%20%7D%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}\frac{-81}{-81} \\\\\frac{81}{-81} \\\\\frac{-162}{-81} \end{array}\right] = \left[\begin{array}{c}1\\-1\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-81%7D%7B-81%7D%20%5C%5C%5C%5C%5Cfrac%7B81%7D%7B-81%7D%20%5C%5C%5C%5C%5Cfrac%7B-162%7D%7B-81%7D%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C-1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
Therefore, the correct option is (1,-1,2)
I think the answer is 320miles,
3hs at 60mph = 180miles
2hs at 70mph = 140miles
so 180+140=320miles
Answer:
Two integers are relatively <u><em>primes</em></u> if and only if their only common positive integer factor is 1.
Step-by-step explanation:
The prime number is one whose only divisor is 1 and itself.
The prime factors of a whole number are the exact prime divisors of that whole number. In other words, every composite number can be written as a multiplication of two or more prime factors.
So, two integers are relative primes if they have no prime factor in common, or, put another way, if they have no common divisor other than 1.
So, <u><em>two integers are relatively primes if and only if their only common positive integer factor is 1.</em></u>