You can use a common denominator and rewrite 3/5 divided by 1/10 as 6/10 divided by 1/10.
Than you can think, “How many ___s are in ___? (Sorry, i don’t know this part)
3/5 divided 1/10 is 6
Answer:
<u>6 hours</u>
Step-by-step explanation:
Subtract saved amount from required amount :
Divide by the pay rate :
Tyrone must work at least <u>6 hours</u> to have $100 saved.
Vertex form uses the following formula:

Identify the values of h and k in your function:


The vertex is found with the following point:


The vertex will be found at
(-5, -28).
Answer: There will enough to paint the outside of a typical spherical water tower.
Step-by-step explanation:
1. Solve for the radius r from the formula for calculate the volume of a sphere. as following:
![V=\frac{4}{3}r^{3}\pi\\\frac{3V}{4\pi}=r^{3}\\r=\sqrt[3]{\frac{3V}{4\pi}}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7Dr%5E%7B3%7D%5Cpi%5C%5C%5Cfrac%7B3V%7D%7B4%5Cpi%7D%3Dr%5E%7B3%7D%5C%5Cr%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D)
2. Substitute values:
![r=\sqrt[3]{\frac{3(66,840.28ft^{3})}{4\pi}}=25.17ft](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%2866%2C840.28ft%5E%7B3%7D%29%7D%7B4%5Cpi%7D%7D%3D25.17ft)
3. Substitute the value of the radius into the equation fo calculate the surface area of a sphere, then you obtain that the surface area of a typical spherical water tower is:

3. If a city has 25 gallons of paint available and one gallon of paint covers 400 square feet of surface area, you must multiply 25 by 400 square feet to know if there will be enough to paint the outside of a typical spherical water tower.

As you can see, there will enough to paint the outside of a typical spherical water tower.
Answer:
59
Step-by-step explanation:
To find f(3), substitute 3 for x:
