Answer:
{5, 6, 7}
Step-by-step explanation:
When we have a given relation, the domain is the set of inputs, and the range as the set of the outputs.
so for a function f(x), and a domain {a. b. c}
The range is:
{f(a), f(b), f(c)}
In this case, we have:
f(x) = x + 6
and the domain is {-1, 0, 1}
Then the range is:
{ f(-1), f(0), f(1) }
{-1 + 6, 0 + 6, 1 + 6}
{5, 6, 7}
The correct option is the third one.
The polynomial p(x)=x^3-6x^2+32p(x)=x 3 −6x 2 +32p, left parenthesis, x, right parenthesis, equals, x, cubed, minus, 6, x, squar
Ray Of Light [21]
Answer:
(x-4)(x-4)(x+2)
Step-by-step explanation:
Given p(x) = x^3-6x^2+32 when it is divided by x - 4, the quotient gives
x^2-2x-8
Q(x) = P(x)/d(x)
x^3-6x^2+32/x- 4 = x^2-2x-8
Factorizing the quotient
x^2-2x-8
x^2-4x+2x-8
x(x-4)+2(x-4)
(x-4)(x+2)
Hence the polynomial as a product if linear terms is (x-4)(x-4)(x+2)
Answer: 462
Step-by-step explanation:
One has heels and one dosent your on your own 252
Answer: D
Step-by-step explanation:
3(1+x)+7 = 3+3x+7 =3x+10