Answer:
I believe the answer is 7
Step-by-step explanation:
X = original amount
x - 1/2x - 2 = 2/5x
1/2x - 2 = 2/5x
-2 = 2/5x - 1/2x
-2 = 4/10x - 5/10x
-2 = - 1/10x
-2 / (-1/10) = x
-2 * - 10/1 = x
20 = x <=== she was originally shipped 20 suits
Answer:
x < -3
Step-by-step explanation:
First subtract 6 from both sides of the inequality.


Divide 4 on both sides.


Answer:
- <u><em>The name of the quadrilateral is</em></u><u> isosceles trapezoid.</u>
Explanation:
1) The two parallel sides of different legths
and
constitute the bases of a trapezoid.
2) The two equal anglesare the base angles of the trapezoid, and mean that it is an isosceles trapezoid.
An isosceles trapezoid is truncated isosceles triangle.
The definition of trapezoid is a quadrilateral with at least two parallel sides.
The drawing is attached: only the green lines represent the figure, the dotted lines just show how this is derived from an isosceles triangle.
Exponent properties help us to simplify the powers of expressions. The quotient of the given expression
is (2∛3 - ∛18).
<h3>What are the basic exponent properties?</h3>
![{a^m} \cdot {a^n} = a^{(m+n)}\\\\\dfrac{a^m}{a^n} = a^{(m-n)}\\\\\sqrt[m]{a^n} = a^{\frac{n}{m}}\\\\(a^m)^n = a^{m\times n}\\\\(m\times n)^a = m^a\times n^a\\\\](https://tex.z-dn.net/?f=%7Ba%5Em%7D%20%5Ccdot%20%7Ba%5En%7D%20%3D%20a%5E%7B%28m%2Bn%29%7D%5C%5C%5C%5C%5Cdfrac%7Ba%5Em%7D%7Ba%5En%7D%20%3D%20a%5E%7B%28m-n%29%7D%5C%5C%5C%5C%5Csqrt%5Bm%5D%7Ba%5En%7D%20%3D%20a%5E%7B%5Cfrac%7Bn%7D%7Bm%7D%7D%5C%5C%5C%5C%28a%5Em%29%5En%20%3D%20a%5E%7Bm%5Ctimes%20n%7D%5C%5C%5C%5C%28m%5Ctimes%20n%29%5Ea%20%3D%20m%5Ea%5Ctimes%20n%5Ea%5C%5C%5C%5C)
Given to us
![\dfrac{6 - 3(\sqrt[3]{6})}{\sqrt[3]{9}}](https://tex.z-dn.net/?f=%5Cdfrac%7B6%20-%203%28%5Csqrt%5B3%5D%7B6%7D%29%7D%7B%5Csqrt%5B3%5D%7B9%7D%7D)
We will solve the problem using the basic exponential properties,
![\dfrac{6 - 3(\sqrt[3]{6})}{\sqrt[3]{9}}\\\\ = \dfrac{6}{\sqrt[3]{9}} - \dfrac{3(\sqrt[3]{6})}{\sqrt[3]{9}}\\\\ = (6\cdot 3^{-\frac{2}{3}}) - [3 \cdot (2 \cdot 3)^{-\frac{2}{3}}3^{-\frac{2}{3}}]\\\\= (2 \cdot 3 \cdot 3^{-\frac{2}{3}}) - [3 \cdot 2^{-\frac{2}{3}} \cdot 3^{-\frac{2}{3}}3^{-\frac{2}{3}}]\\\\](https://tex.z-dn.net/?f=%5Cdfrac%7B6%20-%203%28%5Csqrt%5B3%5D%7B6%7D%29%7D%7B%5Csqrt%5B3%5D%7B9%7D%7D%5C%5C%5C%5C%20%3D%20%5Cdfrac%7B6%7D%7B%5Csqrt%5B3%5D%7B9%7D%7D%20-%20%5Cdfrac%7B3%28%5Csqrt%5B3%5D%7B6%7D%29%7D%7B%5Csqrt%5B3%5D%7B9%7D%7D%5C%5C%5C%5C%20%3D%20%286%5Ccdot%203%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%29%20-%20%5B3%20%5Ccdot%20%282%20%5Ccdot%203%29%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D3%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%5D%5C%5C%5C%5C%3D%20%282%20%5Ccdot%203%20%5Ccdot%203%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%29%20-%20%5B3%20%5Ccdot%202%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%20%5Ccdot%203%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D3%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%5D%5C%5C%5C%5C)
![= [2 \cdot 3^{(1-\frac{2}{3})}] - [2^{\frac{1}{3}}\cdot 3^{(1+\frac{1}{3} - \frac{2}{3})}]\\\\= [2 \cdot 3^{(\frac{1}{3})}] - [2^{\frac{1}{3}}\cdot 3^{(\frac{2}{3})}]\\\\= 2\sqrt[3]{3} - \sqrt[3]{2}\sqrt[3]{9}\\\\=2\sqrt[3]{3} - \sqrt[3]{18}](https://tex.z-dn.net/?f=%3D%20%5B2%20%5Ccdot%203%5E%7B%281-%5Cfrac%7B2%7D%7B3%7D%29%7D%5D%20-%20%5B2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Ccdot%203%5E%7B%281%2B%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B2%7D%7B3%7D%29%7D%5D%5C%5C%5C%5C%3D%20%20%5B2%20%5Ccdot%203%5E%7B%28%5Cfrac%7B1%7D%7B3%7D%29%7D%5D%20-%20%5B2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Ccdot%203%5E%7B%28%5Cfrac%7B2%7D%7B3%7D%29%7D%5D%5C%5C%5C%5C%3D%202%5Csqrt%5B3%5D%7B3%7D%20-%20%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7B9%7D%5C%5C%5C%5C%3D2%5Csqrt%5B3%5D%7B3%7D%20-%20%5Csqrt%5B3%5D%7B18%7D)
Hence, the quotient of the given expression
is (2∛3 - ∛18).
Learn more about Exponents:
brainly.com/question/5497425