Answer: (4, -9)
<u>Step-by-step explanation:</u>
Use elimination method. Manipulate one (or both) equations to eliminate one of the variables and solve for the remaining variable. <em>I will be eliminating y</em>
6x + y = 15 → 2(6x + y = 15) → 12x + 2y = 30
-7x - 2y = -10 → 1(-7x + 2y = -10) → <u> -7x - 2y = -10</u>
5x = 20
x = 4
Next, replace "x" with "4" into either equation and solve for y.
6(4) + y = 15
24 + y = 15
y = -9
<u>Check:</u>
Plug in x = 4 and y = -9 into the other equation to verify it makes a true statement.
-7x - 2y = -10
-7(4) - 2(-9) = -10
-28 - -18 = -10
-28 + 18 = -10
-10 = -10 
Answer:
The value of the 2 is two-thousand
Step-by-step explanation:
The "dot product" of two vectors has several different formulas.
Since you are given the x- and y-coordinates of both vectors a and b, we can apply the formula
a dot b = ax*bx + ay*by, where ax=x-component of vector a, by=y comp of vector b, and so on.
So, for the problem at hand, ax * bx + ay * by becomes
3(-2) + (-8)(-6) = -6 + 48 = 42 (answer). Note that the dot product (or "scalar product" is itself a scalar.