The function has a horizontal tangent line at (2.45, -18.33), (2.45, 2.33) , (-2.45, -16.79) and (-2.45, 0.79)
The function x³ + y² − 12x + 16y = 28 has a horizontal tangent when its derivative dy/dx = 0.
So, differentiating implictly, we have
d(x³ + y² − 12x + 16y)/dx = d28/dx
dx³/dx + dy²/dx − d12x/dx + d16y/dx = d28/dx
2x² + 2ydy/dx - 12 + dy/dx = 0
(2y + 1)dy/dx = 12 - 2x²
dy/dx = (12 - 2x²)/(2y + 1)
So, the function has a horizontal tangent line when dy/dx = 0
So, (12 - 2x²)/(2y + 1) = 0
12 - 2x² = 0
2x² = 12
x² = 12/2
x² = 6
taking square-root of both sides, we have
x = ±√6
Substituting x = √6 = 2.45 into the equation, we have
x³ + y² − 12x + 16y = 28
(√6 )³ + y² − 12(√6) + 16y = 28
6√6 + y² − 12√6 + 16y = 28
y² + 16y + 6√6 − 12√6 - 28 = 0
y² + 16y - (6√6 + 28) = 0
Using the quadratic formula, we find y
So,

Substituting x = -√6 = -2.45 into the equation, we have
x³ + y² − 12x + 16y = 28
(-√6 )³ + y² − 12(-√6) + 16y = 28
-6√6 + y² + 12√6 + 16y = 28
y² + 16y - 6√6 + 12√6 - 28 = 0
y² + 16y + (6√6 - 28) = 0
Using the quadratic formula, we find y
So,

So, the function has a horizontal tangent line at (2.45, -18.33), (2.45, 2.33) , (-2.45, -16.79) and (-2.45, 0.79)
Learn more about horizontal tangent line here:
brainly.com/question/6075797