A = 6
tn = a + (n - 1)d
t4 = 6 + 3d = 12
3d = 12 - 6 = 6
d = 6/3 = 2
f(n + 1) = f(n) + 2
Answer:
b and c
Step-by-step explanation:
Answer:
The proportions differ from those reported in the survey.
Step-by-step explanation:
The Chi-square goodness of fit test would be used to determine whether the proportions differ from those reported in the survey.
The hypothesis for the test can be defined as follows:
<em>H</em>₀: The proportions does not differ from those reported in the survey.
<em>Hₐ</em>: The proportions differ from those reported in the survey.
Assume that the significance level of the test is, α = 0.01.
The Chi-square test statistic is given by:

Consider the Excel sheet provided.
The Chi-square test statistic value is 191.32.
The <em>p</em>-value of the test is:

The <em>p</em>-value of the test is very small. The null hypothesis will be rejected at 1% level of significance.
Thus, concluding that the proportions differ from those reported in the survey.