<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
Answer:
70m/s²
Explanation:
we will use the first equation of Dalton to find it
If the net force acting on a moving object causes no change in its velocity, the object's momentum will stay the same.
<h3>What is momentum?</h3>
Momentum of a body in motion refers to the tendency of a body to maintain its inertial motion.
The momentum is the product of its mass and velocity.
This suggests that if the net force acting on a moving object causes no change in its velocity, the momentum of the object will remain the same.
Therefore, if the net force acting on a moving object causes no change in its velocity, the object's momentum will stay the same.
Learn more about momentum at: brainly.com/question/13554527
#SPJ1
First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation



So by solving above equation we will have

now in order to find the momentum we can use


