Answer:
a1 = 3.56 m/s²
Explanation:
We are given;
Mass of book on horizontal surface; m1 = 3 kg
Mass of hanging book; m2 = 4 kg
Diameter of pulley; D = 0.15 m
Radius of pulley; r = D/2 = 0.15/2 = 0.075 m
Change in displacement; Δx = Δy = 1 m
Time; t = 0.75
I've drawn a free body diagram to depict this question.
Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;
ΣF_x = T1 = m1 × a1
a1 is acceleration and can be calculated from Newton's 2nd equation of motion.
s = ut + ½at²
our s is now Δx and a1 is a.
Thus;
Δx = ut + ½a1(t²)
u is initial velocity and equal to zero because the 3 kg book was at rest initially.
Thus, plugging in the relevant values;
1 = 0 + ½a1(0.75²)
Multiply through by 2;
2 = 0.75²a1
a1 = 2/0.75²
a1 = 3.56 m/s²
Answer:
its because static electricity my guy
Explanation:
The heat required to change 1.25 kg of steak is 2825 kJ /kg.
<u>Explanation</u>:
Given, mass m = 1.25 kg, Temperature t = 100 degree celsius
To calculate the heat required,
Q = m
L
where m represents the mass in kg,
L represents the heat of vaporization.
When a material in the liquid state is given energy, it changes its phase from liquid to vapor and the energy absorbed in this process is called heat of the vaporization. The heat of vaporization of the water is about 2260 kJ/kg.
Q = 1.25
2260
Q = 2825 kJ /kg.
Shale, sandstone, and limestone are the most commoc types of sedimentary rocks. They are formed by the most common mineral that is found on or near the surface of the Earth
Answer:
8046.72 meters pretty sure