- Mass=m=142kg
- Acceleration=a=30m/s
- Force=F
Using Newton's second law



Answer:
A. 
B. 
C. 
Explanation:
Given:
- spring constant,

- mass attached,

A)
for a spring-mass system the frequency is given as:



B)
frequency is given as:



C)
Time period of a simple harmonic motion is given as:


<span>The law of conservation of matter and energy relates to the cycles in nature, and by that it is also applied to rocks and other materials. All of the rock in the Earth is recycled and accounted for during the rock cycle. Rocks experience physical change, the composition of the material stays the same, it may just change how it looks and chemical changes occur (the suubstance undergoes a chemical reaction that changes the actual makeup of the substance).</span>