Answer:
22.5J
Explanation:
Here the force is given. Also, the displacement is given as 30cm.
First we should check if all the values are in their standard form.
Here 30cm should be converted to metre by dividing it with 100.
Which would give us 0.3m
Now we use the equation W=force x displacement =75 x 0.3=22.5J
I hope this satisfies you. If u have any further questions please let me know.
I hope u will follow me and make this the brainliest answer.
Values in physics that do not affect each other are considered Independent values
The correct answer is 1.25 because it is 1/2 of 1 1/2 and that is 1.25.
Answer:
0.02 s
160 m/s
Explanation:
Given:
Δx = 1.6 m
v₀ = 0 m/s
a = 8000 m/s²
A) Find t.
Δx = v₀ t + ½ at²
1.6 m = (0 m/s) t + ½ (8000 m/s²) t²
t = 0.02 s
B) Find v.
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (8000 m/s²) (1.6 m)
v = 160 m/s
Answer:
a) h = 593.50 m
b) h₁₁ = 103 m
c) vf = 107.91 m/s
Explanation:
a)
We will use second equation of motion to find the height:

where,
h = height = ?
vi = initial speed = 0 m/s
t = time taken = 11 s
g = 9.81 /s²
Therefore,

<u>h = 593.50 m</u>
b)
For the distance travelled in last second, we first need to find velocity at 10th second by using first equation of motion:

where,
vf = final velocity at tenth second = v₁₀ = ?
t = 10 s
vi = 0 m/s
Therefore,

Now, we use the 2nd equation of motion between 10 and 11 seconds to find the height covered during last second:

where,
h = height covered during last second = h₁₁ = ?
vi = v₁₀ = 98.1 m/s
t = 1 s
Therefore,

<u>h₁₁ = 103 m</u>
c)
Now, we use first equation of motion for complete motion:

where,
vf = final velocity at tenth second = ?
t = 11 s
vi = 0 m/s
Therefore,

<u>vf = 107.91 m/s</u>