Answer:

Step-by-step explanation:
![{ \tt{\int\limits^2_1 {x^{2}-8x+8 } \, dx}} \\ \\ = { \tt{[ \frac{ {x}^{3} }{3} - 4 {x}^{2} + 8x ] {}^{2} _{1}}}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7B%5Cint%5Climits%5E2_1%20%7Bx%5E%7B2%7D-8x%2B8%20%7D%20%5C%2C%20dx%7D%7D%20%5C%5C%20%20%5C%5C%20%3D%20%20%7B%20%5Ctt%7B%5B%20%5Cfrac%7B%20%7Bx%7D%5E%7B3%7D%20%7D%7B3%7D%20%20-%204%20%7Bx%7D%5E%7B2%7D%20%20%2B%208x%20%5D%20%7B%7D%5E%7B2%7D%20_%7B1%7D%7D%7D)
Substitute x with the limits:

2 cubed. Cubed also means multiply so enjoying by itself times. So, 2 * 2 = 4 * 2 = 8.
2 cubed = 8
Answer:
A is the answers for the question
Step-by-step explanation:
please mark me as brainlest
Answer:
I think is -8x-4 let me know if im right
Step-by-step explanation:
Answer:
The second answer
Step-by-step explanation:
Hope this helps dude