Giving the table below which shows <span>the percent increase of donations made on behalf of a non-profit organization for the period of 1984 to 2003.
</span>
Year: 1984 1989 1993 1997 2001 2003
Percent: 7.8 16.3 26.2 38.9 49.2 62.1
The scatter plot of the data is attached with the x-axis representing the number of years after 1980 and the y-axis representing the percent increase <span>of donations made on behalf of a non-profit organization.
To find the equation for the line of regression where </span><span>the x-axis representing the number of years after 1980 and the y-axis representing the percent increase of donations made on behalf of a non-profit organization.
![\begin{center} \begin{tabular}{ c| c| c| c| } x & y & x^2 & xy \\ [1ex] 4 & 7.8 & 16 & 31.2 \\ 9 & 16.3 & 81 & 146.7 \\ 13 & 26.2 & 169 & 340.6 \\ 17 & 38.9 & 289 & 661.3 \\ 21 & 49.2 & 441 & 1,033.2 \\ 23 & 62.1 & 529 & 1,428.3 \\ [1ex] \Sigma x=87 & \Sigma y=200.5 & \Sigma x^2=1,525 & \Sigma xy=3,641.3 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%7B%20c%7C%20c%7C%20c%7C%20c%7C%20%7D%0A%20x%20%26%20y%20%26%20x%5E2%20%26%20xy%20%5C%5C%20%5B1ex%5D%20%0A%204%20%26%207.8%20%26%2016%20%26%2031.2%20%5C%5C%20%20%0A%209%20%26%2016.3%20%26%2081%20%26%20146.7%20%5C%5C%20%0A13%20%26%2026.2%20%26%20169%20%26%20340.6%20%5C%5C%20%0A17%20%26%2038.9%20%26%20289%20%26%20661.3%20%5C%5C%20%0A21%20%26%2049.2%20%26%20441%20%26%201%2C033.2%20%5C%5C%20%0A23%20%26%2062.1%20%26%20529%20%26%201%2C428.3%20%5C%5C%20%5B1ex%5D%0A%5CSigma%20x%3D87%20%26%20%5CSigma%20y%3D200.5%20%26%20%5CSigma%20x%5E2%3D1%2C525%20%26%20%5CSigma%20xy%3D3%2C641.3%20%20%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)
</span>
Recall that the equation of the regression line is given by
![y=a+bx](https://tex.z-dn.net/?f=y%3Da%2Bbx)
where
![a= \frac{(\Sigma y)(\Sigma x^2)-(\Sigma x)(\Sigma xy)}{n(\Sigma x^2)-(\Sigma x)^2} = \frac{200.5(1,525)-87(3,641.3)}{6(1,525)-(87)^2} \\ \\ = \frac{305,762.5-316793.1}{9,150-7,569} = \frac{-11,030.6}{1,581} =-6.977](https://tex.z-dn.net/?f=a%3D%20%5Cfrac%7B%28%5CSigma%20y%29%28%5CSigma%20x%5E2%29-%28%5CSigma%20x%29%28%5CSigma%20xy%29%7D%7Bn%28%5CSigma%20x%5E2%29-%28%5CSigma%20x%29%5E2%7D%20%3D%20%5Cfrac%7B200.5%281%2C525%29-87%283%2C641.3%29%7D%7B6%281%2C525%29-%2887%29%5E2%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%5Cfrac%7B305%2C762.5-316793.1%7D%7B9%2C150-7%2C569%7D%20%3D%20%5Cfrac%7B-11%2C030.6%7D%7B1%2C581%7D%20%3D-6.977)
and
![b= \frac{n(\Sigma xy)-(\Sigma x)(\Sigma y)}{n(\Sigma x^2)-(\Sigma x)^2} = \frac{6(3,641.3)-(87)(200.5)}{6(1,525)-(87)^2} \\ \\ = \frac{21,847.8-17,443.5}{9,150-7,569} = \frac{4,404.3}{1,581} =2.7858](https://tex.z-dn.net/?f=b%3D%20%5Cfrac%7Bn%28%5CSigma%20xy%29-%28%5CSigma%20x%29%28%5CSigma%20y%29%7D%7Bn%28%5CSigma%20x%5E2%29-%28%5CSigma%20x%29%5E2%7D%20%3D%20%5Cfrac%7B6%283%2C641.3%29-%2887%29%28200.5%29%7D%7B6%281%2C525%29-%2887%29%5E2%7D%20%20%5C%5C%20%20%5C%5C%20%3D%20%5Cfrac%7B21%2C847.8-17%2C443.5%7D%7B9%2C150-7%2C569%7D%20%3D%20%5Cfrac%7B4%2C404.3%7D%7B1%2C581%7D%20%3D2.7858)
Thus, the equation of the regresson line is given by
![y=-6.977+2.7858x](https://tex.z-dn.net/?f=y%3D-6.977%2B2.7858x)
The graph of the regression line is attached.
Using the equation, we can predict the percent donated in the year 2015. Recall that 2015 is 35 years after 1980. Thus x = 35.
The percent donated in the year 2015 is given by
![-6.977+2.7858(35)=-6.977+97.503=90.526](https://tex.z-dn.net/?f=-6.977%2B2.7858%2835%29%3D-6.977%2B97.503%3D90.526)
Therefore, the percent donated in the year 2015 is predicted to be 90.5
The string is assumed to be massless so the tension is the sting above the 12.0 N block has the same magnitude to the horizontal tension pulling to the right of the 20.0 N block. Thus,
1.22 a = 12.0 - T (eqn 1)
and for the 20.0 N block:
2.04 a = T - 20.0 x 0.325 (using µ(k) for the coefficient of friction)
2.04 a = T - 6.5 (eqn 2)
[eqn 1] + [eqn 2] → 3.26 a = 5.5
a = 1.69 m/s²
Subs a = 1.69 into [eqn 2] → 2.04 x 1.69 = T - 6.5
T = 9.95 N
Now want the resultant force acting on the 20.0 N block:
Resultant force acting on the 20.0 N block = 9.95 - 20.0 x 0.325 = 3.45 N
<span>Units have to be consistent ... so have to convert 75.0 cm to m: </span>
75.0 cm = 75.0 cm x [1 m / 100 cm] = 0.750 m
<span>work done on the 20.0 N block = 3.45 x 0.750 = 2.59 J</span>
I hope this helps you
Area=1/2.b.c.sinA
Area =1/2.4.3.0,99
Area =5,98
You can't really determine the amount of computers from this question, they're obviously not going to have one computer for everyone so half third, or even a fourth of the school population