3-(2x-5)=-4(x+2)
We simplify the equation to the form, which is simple to understand
3-(2x-5)=-4(x+2)
Remove unnecessary parentheses
3-2x+5=-4*(x+2)
Reorder the terms in parentheses
3-2x+5=+(-4x-8)
Remove unnecessary parentheses
+3-2x+5=-4x-8
We move all terms containing x to the left and all other terms to the right.
-2x+4x=-8-3-5
We simplify left and right side of the equation.
+2x=-16
We divide both sides of the equation by 2 to get x.
x=-8
In order to have infinitely many solutions with linear equations/functions, the two equations have to be the same;
In accordance, we can say:
(2p + 7q)x = 4x [1]
(p + 8q)y = 5y [2]
2q - p + 1 = 2 [3]
All we have to do is choose two equations and solve them simultaneously (The simplest ones for what I'm doing and hence the ones I'm going to use are [3] and [2]):
Rearrange in terms of p:
p + 8q = 5 [2]
p = 5 - 8q [2]
p + 2 = 2q + 1 [3]
p = 2q - 1 [3]
Now equate rearranged [2] and [3] and solve for q:
5 - 8q = 2q - 1
10q = 6
q = 6/10 = 3/5 = 0.6
Now, substitute q-value into rearranges equations [2] or [3] to get p:
p = 2(3/5) - 1
p = 6/5 - 1
p = 1/5 = 0.2
Answer:
The answer is below
Step-by-step explanation:
Let x represent the number of single cone ice cream and let y represent the number of double cone ice cream.
Since the vendor stocks a maximum of 70 single cones and a maximum of 45 double cones. hence:
0 < x ≤ 70, 0 < y ≤ 45 (1)
The vendor expects to sell no more than 50 ice creams, hence:
x + y ≤ 50
Plotting the constraint using geogebra online graphing tool, we can see that the solution to the problem is at (5, 45)
Since the vendor sells single-cone ice-creams for $3 and double-cone ice-creams for $4.50, hence:
Revenue = 3x + 4.5y
At the point (5, 45), the revenue is:
Revenue = 3(5) + 4.5(45) = $217.5
Answer:
Coefficient
Explaination:
I just know
Straight line depreciation applies the same amount of depreciation in each year.
Our Depreciation Base is 21,000 - 1,000 = 20,000
The useful life is 5 years, so each year we depreciate 20,000 ÷ 5 = 4,000
Book Value is Cost - Accumulated Depreciation
After Year 1:
Book Value = 21,000 - 4,000 = 17,000
Answer is A) 17,000