10^1 = .2
10^2 = 2.0
10^3 = 20.0
So, the answer is 3.
No, there is no 'greatest integer'. That is because positive numbers can go up tp infinite, and we do not know where numbers stop.
However, there is a negative greatest integer because the ones that's closes to zero is -1.
I'd be more than happy to help. Im a sophmore and Love math
A)4^(n+3)=8^14
2^(2×(n+3))=2^(3×14)
2^(2n+6)=2^42
2^2n=2^36
n=18
b) (assuming a : is divide)
3^(2n+1)=9^17/3^3
3^(2n+1)=3^(2×16)/3^3
3^(2n+1)=3^29
3^2n=3^28
2n=28
n=14
d) (6^n)^4×36=216^10
6^4n×6^2=6^(3×10)
6^(4n+2)=6^30
6^4n=6^28
4n=28
n=7
e)7^(n^2)÷7=49^24
7^(n^2-1)=7^(2×24)
7^(n^2)=7^49
n^2=49
n=7
g)15^(n+4)÷5^(n+4)=81^6
3^(n+4)×5^(n+4)÷5^(n+4)=3^(4×6)
3^(n+4)=3^24
n=20
h)81^n÷9^n+9^(n+2)÷9=90÷9^6
9^2n÷9^n+9^(n+2)÷9=9*10/9^6
9^n+9^(n+1)=10/9^5
I don't know where to go from here
I)what?