Answer:
an = -39 -100(n -1)
Step-by-step explanation:
The given sequence can be described by a 3rd degree polynomial.* However, we suspect a typo, and that your intention is to have a formula for the arithmetic sequence ...
-39, -139, -239, -339
This has a first term a1 = -39, and a common difference d = -100.
The model for the explicit formula is ...
an = a1 +d(n -1)
Filling in the given values, the formula you seek is ...
an = -39 -100(n -1)
_____
* That polynomial is ...
an = 50n^3 +350n^2 -800n +461
This gives a sequence that starts ...
-39, -139, -139, -339, -1039, -2539, -5139, -9139, ...
The answer is B
step by step explanation:
Answer:
7/2
Step-by-step explanation:
(3,2) (5,9): Slope -->
(9-2)/(5-3) = 7/2
Answer:
Y= 2X+8
Step-by-step explanation:
Compare the given line with y=mx+c will give the slope of the parallel line as 2. Equation of new line in point slope form is y-y1 = m(x-x1). So y-4 = 2 (x+2) will give you Y= 2X+8
<h3>Function 1 : </h3>
Observe the abscicca and ordinates
<u>*</u><u>Note</u><u> </u><u>that</u><u>:</u><u>-</u><u> </u><em>y-coordinate</em><em> </em><em>is</em><em> </em><em>ordinate</em><em> </em><em>and</em><em> </em><em>x-coordinate</em><em> </em><em>is</em><em> </em><em>abscicca</em><em>.</em>
- The ordinate having 0 as abscicca in function 1 is (0,1), Thus.. The y-intercept is 1
<h3>
Function 2 : </h3>
Observe the graph and mark the point where function meets y-axis
<u>*</u><u>Note</u><u> </u><u>that</u><u>:</u><u>-</u><u> </u><em>The</em><em> </em><em>point</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>graph</em><em> </em><em>where</em><em> </em><em>the</em><em> </em><em>function</em><em> </em><em>meets</em><em> </em><em>y-axis</em><em> </em><em>is</em><em> </em><em>called</em><em> </em><em>y-intercept</em><em>.</em>
- The point where the function meets is (0,1). Therefore, The y-intercept of function 2 is also 1

<em><u>Thus, Option C is the correct choice!!~</u></em>