Answer:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=V%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We want to reflect this 2x1 vector on the line y = x.
To make this reflection we must use the following matrix:
![R=\left[\begin{array}{cc}0&1\\1&0\\\end{array}\right]](https://tex.z-dn.net/?f=R%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%261%5C%5C1%260%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Where R is known as the reflection matrix on the line x = y
Now perform the product of the vector <-1,5> x R.
![\left[\begin{array}{ccc}-1\\5\end{array}\right]x\left[\begin{array}{ccc}0&1\\1&0\end{array}\right]\\\\\\\left[\begin{array}{ccc}-1(0) +5(1)&-1(1)+5(0)\end{array}\right]\\\\\\\left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C5%5Cend%7Barray%7D%5Cright%5Dx%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C1%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%280%29%20%2B5%281%29%26-1%281%29%2B5%280%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
The vector matrix that represents the reflection of the vector <-1,5> across the line x = y is:
![V = \left[\begin{array}{ccc}5&-1\end{array}\right]](https://tex.z-dn.net/?f=V%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-1%5Cend%7Barray%7D%5Cright%5D)
what is your clear question? it lacks some details
Answer:
n ≥ -4
Step-by-step explanation:
-3/4n ≤ 3
-4/3(-3/4n) ≤ 3(-4/3)
n ≥ -12/3
n ≥ -4
CHECK:
correct
-3/4(-4) ≤ 3
12/4 ≤ 3
3 = 3
correct
-3/4(5) ≤ 3
-15/4 ≤ 3
-3.75 < 3
incorrect
-3/4(1) ≤ 3
-3/4 is not ≤ 3
Answer:
deese nots
Step-by-step explanation: