Answer:
The sum of the first 650 terms of the given arithmetic sequence is 2,322,775
Step-by-step explanation:
The first term here is 4
while the nth term would be ai = a(i-1) + 11
Kindly note that i and 1 are subscript of a
Mathematically, the sum of n terms of an arithmetic sequence can be calculated using the formula
Sn = n/2[2a + (n-1)d)
Here, our n is 650, a is 4, d is the difference between two successive terms which is 11.
Plugging these values, we have
Sn = (650/2) (2(4) + (650-1)11)
Sn = 325(8 + 7,139)
Sn = 325(7,147)
Sn = 2,322,775
Answer: c) There is not enough evidence to reject H0
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
Answer:
C. f(x) = x - 7 all over 4
Step-by-step explanation:
NB: Let f(x) = y
Exchange X and Y
Make y the subject
f(x) = 4x + 7
y = 4x + 7
x = 4y + 7
x - 7 = 4y
x - 7 all over 4 = 4 ÷ 4
y = x - 7 all over 4