Answer:
I belive it would be B or D, but B seems more likely
Explanation:
(a) We will use the equation v = u + at
Initial velocity u = 5.00 m/s
Acceleration a = 0.0600 m/s²
time = 8 min = 8 x 60 = 480 s
Final velocity
= u + at
= 5.00 + 0.0600(480)
= 33.8 m/s
The final velocity is 33.8 m/s
Answer:
I think it would be GFI outlet
Explanation:
Ground Fault Circuit Interrupter (GFI) device protects us from receiving electric shocks from faults in the electrical devices we use in our home. (resource Google)
Answer:

Explanation:
<u>Horizontal Launch
</u>
It happens when an object is launched with an angle of zero respect to the horizontal reference. It's characteristics are:
- The horizontal speed is constant and equal to the initial speed

- The vertical speed is zero at launch time, but increases as the object starts to fall
- The height of the object gradually decreases until it hits the ground
- The horizontal distance where the object lands is called the range
We have the following formulas




Where
is the initial horizontal speed,
is the vertical speed, t is the time, g is the acceleration of gravity, x is the horizontal distance, and y is the height.
If we know the initial height of the object, we can compute the time it takes to hit the ground by using

Rearranging and solving for t



We then replace this value in

To get



The initial speed depends on the initial height y=32.5 m, the range x=107.6 m and g=9.8 m/s^2. Computing 

The launch velocity is

Answer:
ummmmm mmmmm butterflies :)
Explanation: