1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
3 years ago
8

Stairway must have uniform riser height and tread depth; variations in riser height or tread depth shall not be over _______ inc

h in any stairway system.
Physics
1 answer:
alexandr1967 [171]3 years ago
5 0

Answer:

\frac{3}{8} inches

Explanation:

the variations in riser height or tread depth should not be grater than \frac{3}{8} inches that is equal to 9.5 mm but the maximum riser height should be the  \frac{81}{4} inch  but variation in riser height should not exceed to \frac{3}{8} inches. The minimum riser height should be 7 inches which is equal to the 178 mm

You might be interested in
An electron is released from rest on the axis of a uniform positively charged ring, 0.200 m from the ring's center. If the linea
melisa1 [442]

Answer:

Velocity of the electron at the centre of the ring, v=1.37\times10^7\ \rm m/s

Explanation:

<u>Given:</u>

  • Linear charge density of the ring=0.1\ \rm \mu C/m
  • Radius of the ring R=0.2 m
  • Distance of point from the centre of the ring=x=0.2 m

Total charge of the ring

Q=0.1\times2\pi R\\Q=0.1\times2\pi 0.4\\Q=0.251\ \rm \mu C

Potential due the ring at a distance x from the centre of the rings is given by

V=\dfrac{kQ}{\sqrt{(R^2+x^2)}}\\

The potential difference when the electron moves from x=0.2 m to the centre of the ring is given by

\Delta V=\dfrac{kQ}{R}-\dfrac{kQ}{\sqrt{(R^2+x^2)}}\\\Delta V={9\times10^9\times0.251\times10^{-6}} \left( \dfrac{1}{0.4}-\dfrac{1}{\sqrt{(0.4^2+0.2^2)}} \right )\\\Delta V=5.12\times10^2\ \rm V

Let\Delta U be the change in potential Energy given by

\Delta U=e\times \Delta V\\\Delta U=1.67\times10^{-19}\times5.12\times10^{2}\\\Delta U=8.55\times10^{-17}\ \rm J

Change in Potential Energy of the electron will be equal to the change in kinetic Energy of the electron

\Delta U=\dfrac{mv^2}{2}\\8.55\times10^{-17}=\dfrac{9.1\times10^{-31}v^2}{2}\\v=1.37\times10^7\ \rm m/s

So the electron will be moving with v=1.37\times10^7\ \rm m/s

5 0
3 years ago
Answer for a thanks
mariarad [96]
Well, if your question is how light affects plants,

then you would want to design an experiment that plays aruond with the amount of light a plant gets

thus the thing changing (or variable) would be amount of light
7 0
3 years ago
A huge tank of glycerine with a density of 1.260 g/cm3 is vertically stationed on a platform which is 15 m above the ground. The
EleoNora [17]

Answer:

The tank is losing 4.976*10^{-4}  m^3/s

v_g = 19.81 \ m/s

Explanation:

According to the Bernoulli’s equation:

P_1 + 1 \frac{1}{2} \rho v_1^2 + \rho gh_1 = P_2 +  \frac{1}{2}  \rho v_2^2 + \rho gh_2

We are being informed that both the tank and the hole is being exposed to air :

∴ P₁ = P₂

Also as the tank is voluminous ; we take the initial volume  v_1 ≅ 0 ;

then v_2 can be determined as:\sqrt{[2g (h_1- h_2)]

h₁ = 5 + 15 = 20 m;

h₂ = 15 m

v_2 = \sqrt{[2*9.81*(20 - 15)]

v_2 = \sqrt{[2*9.81*(5)]

v_2= 9.9 \ m/s  as it leaves the hole at the base.

radius r = d/2  = 4/2 = 2.0 mm

(a) From the law of continuity; its equation can be expressed as:

J = A_1v_2

J = πr²v_2    

J =\pi *(2*10^{-3})^{2}*9.9

J =1.244*10^{-4}  m^3/s

b)

How fast is the water from the hole moving just as it reaches the ground?

In order to determine that; we use the relation of the velocity from the equation of motion which says:

v² = u² + 2gh ₂

v² = 9.9² + 2×9.81×15

v² = 392.31

The velocity of how fast the water from the hole is moving just as it reaches the ground is : v_g = \sqrt{392.31}

v_g = 19.81 \ m/s

4 0
3 years ago
What type of rock forms due to heating and cooling?
tatuchka [14]
The type of rocks are magma and the igneous rocks.
5 0
3 years ago
Read 2 more answers
if we ignore air resistance the mass of an object does not affect the rate at which it accelerate why?​
quester [9]

Answer:

See explanation

Explanation:

The acceleration due to gravity on an object is independent of the mass of the object. This is so because, the acceleration due to gravity depends only on the radius of the earth and the mass of the earth.

As a result of this, all objects are accelerated to the same extent and should reach the ground at the same time when released from a height as long as other forces other than gravity are not at work.

5 0
3 years ago
Other questions:
  • Describe one way in which entropy can increase when reactants turn into products Answer in a complete sentence
    7·1 answer
  • Large numbers of ribosomes are present in cells that specialize in producing which molecules?
    9·1 answer
  • The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the
    6·1 answer
  • Do you think scientists will ever be able to recreate a living creature from the distant past successfully?
    8·2 answers
  • 4.<br> What distance would a car travel after 4 hours travelling at 60mph?
    8·2 answers
  • Biologists have studied the running ability of the northern quoll, a marsupial indigenous to Australia. In one set of experiment
    13·1 answer
  • What unita are used to measure electrical current​
    8·2 answers
  • A flat coil is wrapped with 200 turns of very thin wire on a square frame with sides 18 cm long. A uniform magnetic field is app
    5·1 answer
  • What important component is still scarce for American manufacturers, which had 40 days' worth before the pandemic but only had a
    15·1 answer
  • an airplane flying due north at 90. km/h is being blown due west at 50. km/h. what is the resultant velocity of the plane?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!