<span>1. For the data in the table, does y vary directly with X? If it does write an equation for the direct variation.(X,y) (8,11) (16,22) (24,33)
</span><span>
Yes y=1.375x
</span><span>2.for the data in the table, does y vary directly with X? If it does write an equation for the direct variation. (X,y) (16,4) (32,16) (48,36)
</span>No y does not very directly with x*** <span>
</span><span>3. (Time/hour,distance/miles)(4,233) (6,348) (8,464) (10, 580)
Express the relationship between distance and time in a simplified form as a unit rate. Determine which statement correctly interprets this relationship.
</span><span>58/1 your car travels 58 miles in 1 hour
</span><span>4.what is the slope of the line that passes through the pair of points (2,5) and (8,3)
</span>-1/3
<span>4.what is the slope of the line that passes through the pair of points (-5.2,8.7) and (-3.2,2.7)
</span>
-3
<span>5. What is the slope of the line that passes through the pair of points (3/2,-2) and (-3,7/3)
-26/27
</span><span>6.write an equation in point slope from for the line through the given point with the given slope (5,2) m=3
Y-2=3(X-5)
7. Write an equation in point slope form for the line through the given point with the given slope (-3,-5) m=-2/5
Y+5=-2/5(X+3)
</span><span>8. Write an equation in point slope from for the line through the given point with the given slope. (4,-7) m=-0.54
Y+7=-0.54(x-4)
9. The table shows the height of a plant as it grows. Which equation in point slope from gives the plants height (time,plant height) (2,16)(4,32)(6,48)(8,64)
Y-16=8(X-2)***
</span>
<span>10. Write y=-2/3x+7 in standard form
2x+3y=21
11. Write y=-1/2x+1 in standard form using integers
X+2y=2
</span>
Answer:
D im not sure but i hope its right
Step-by-step explanation:
120^ is the answer for this problem
Check the picture below.
since the vertical distance, namely the y-coordinate, is twice as much as the horizontal, then if the horizontal is "x", the vertical one must be 2x.
let's find the hypotenuse first.
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=\stackrel{adjacent}{x}\\ b=\stackrel{opposite}{2x}\\ \end{cases} \\\\\\ c=\sqrt{x^2+(2x)^2}\implies c=\sqrt{x^2+4x^2}\implies c=\sqrt{5x^2}\implies c=x\sqrt{5} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3D%5Cstackrel%7Badjacent%7D%7Bx%7D%5C%5C%20b%3D%5Cstackrel%7Bopposite%7D%7B2x%7D%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7Bx%5E2%2B%282x%29%5E2%7D%5Cimplies%20c%3D%5Csqrt%7Bx%5E2%2B4x%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B5x%5E2%7D%5Cimplies%20c%3Dx%5Csqrt%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{2~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }}{\stackrel{hypotenuse}{~~\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ \sqrt{5}}}\implies \stackrel{\textit{and rationalizing the denominator}~\hfill }{\cfrac{2}{\sqrt{5}}\cdot \cfrac{\sqrt{5}}{\sqrt{5}}\implies \cfrac{2\sqrt{5}}{(\sqrt{5})^2}\implies \cfrac{2\sqrt{5}}{5}}](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B2~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B~~%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%5Csqrt%7B5%7D%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Band%20rationalizing%20the%20denominator%7D~%5Chfill%20%7D%7B%5Ccfrac%7B2%7D%7B%5Csqrt%7B5%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%7B5%7D%7D%7B%5Csqrt%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B%28%5Csqrt%7B5%7D%29%5E2%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%7B5%7D%7D%7B5%7D%7D)