1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
2 years ago
11

If UV ≅ UX and WX=23, what is VW? VW =

Mathematics
1 answer:
KiRa [710]2 years ago
5 0
<h2>Answer: </h2>

The length of VW is 23°

<h2>Step-by-step explanation: </h2><h3>Known : </h3>
  • UV = UX
  • WX = 23  

<h3>Asked : </h3>

VW = ?

<h3>Solution : </h3>

Since the UV line and UX line has the same length, so the VW line should have the same length as the WX line.

VW = WX

23 = 23

<h3>Conclusion : </h3>

The length of VW is 23°

You might be interested in
Evaluate the expression 3d if d =5
Vinvika [58]

Answer:

15

Step-by-step explanation:

since 3d is multiplying, it would be set up as 3*5=15

3 0
2 years ago
Read 2 more answers
Find the quotient. 7,398 ÷ 6 *
Crank
Answer:1,230.5

Reason: just learn how to divide
7 0
2 years ago
Read 2 more answers
Find an equation of the tangent plane to the given parametric surface at the specified point.
Neko [114]

Answer:

Equation of tangent plane to given parametric equation is:

\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}

Step-by-step explanation:

Given equation

      r(u, v)=u cos (v)\hat{i}+u sin (v)\hat{j}+v\hat{k}---(1)

Normal vector  tangent to plane is:

\hat{n} = \hat{r_{u}} \times \hat{r_{v}}\\r_{u}=\frac{\partial r}{\partial u}\\r_{v}=\frac{\partial r}{\partial v}

\frac{\partial r}{\partial u} =cos(v)\hat{i}+sin(v)\hat{j}\\\frac{\partial r}{\partial v}=-usin(v)\hat{i}+u cos(v)\hat{j}+\hat{k}

Normal vector  tangent to plane is given by:

r_{u} \times r_{v} =det\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\cos(v)&sin(v)&0\\-usin(v)&ucos(v)&1\end{array}\right]

Expanding with first row

\hat{n} = \hat{i} \begin{vmatrix} sin(v)&0\\ucos(v) &1\end{vmatrix}- \hat{j} \begin{vmatrix} cos(v)&0\\-usin(v) &1\end{vmatrix}+\hat{k} \begin{vmatrix} cos(v)&sin(v)\\-usin(v) &ucos(v)\end{vmatrix}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u(cos^{2}v+sin^{2}v)\hat{k}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u\hat{k}\\

at u=5, v =π/3

                  =\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k} ---(2)

at u=5, v =π/3 (1) becomes,

                 r(5, \frac{\pi}{3})=5 cos (\frac{\pi}{3})\hat{i}+5sin (\frac{\pi}{3})\hat{j}+\frac{\pi}{3}\hat{k}

                r(5, \frac{\pi}{3})=5(\frac{1}{2})\hat{i}+5 (\frac{\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}

                r(5, \frac{\pi}{3})=\frac{5}{2}\hat{i}+(\frac{5\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}

From above eq coordinates of r₀ can be found as:

            r_{o}=(\frac{5}{2},\frac{5\sqrt{3}}{2},\frac{\pi}{3})

From (2) coordinates of normal vector can be found as

            n=(\frac{\sqrt{3} }{2},-\frac{1}{2},1)  

Equation of tangent line can be found as:

  (\hat{r}-\hat{r_{o}}).\hat{n}=0\\((x-\frac{5}{2})\hat{i}+(y-\frac{5\sqrt{3}}{2})\hat{j}+(z-\frac{\pi}{3})\hat{k})(\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k})=0\\\frac{\sqrt{3}}{2}x-\frac{5\sqrt{3}}{4}-\frac{1}{2}y+\frac{5\sqrt{3}}{4}+z-\frac{\pi}{3}=0\\\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}

5 0
2 years ago
Write the equation in standard form. Identity the center and radius.<br> x² + y2 + 8x-4y-7=0
Masteriza [31]

Answer:

  • See below

Step-by-step explanation:

<u>Given equation:</u>

  • x² + y² + 8x - 4y - 7 = 0

<u>Convert this to standard form by completing the square:</u>

  • (x - h)² + (y - k)² = r², where (h, k) - center, r - radius
  • x² + 2*4x + 4² + y² - 2*2y + 2² - 16 - 4 - 7 = 0
  • (x + 4)² + (y - 2)² - 27 = 0
  • (x + 4)² + (y - 2)² = 27
  • (x + 4)² + (y - 2)² = (√27)²

The center is (- 4, 2) and the radius is √27

3 0
2 years ago
Given the definitions of f(x) and g(x) below, find the value of (gºf)(-5).
jolli1 [7]

Answer:

(g ○ f)(- 5) = 4

Step-by-step explanation:

evaluate f(- 5) then substitute the value obtained into g(x)

f(- 5) = (- 5)² + 6(- 5) + 3 = 25 - 30 + 3 = - 2 , then

g(- 2) = 2(- 2) + 8 = - 4 + 8 = 4

(g ○ f)(- 5) = 4

5 0
2 years ago
Other questions:
  • What numbers fit in the range of 13-23
    11·2 answers
  • Mike forgot to replace the cap on a bottle of room freshener. The room freshener began to evaporate at the rate of 15% per day.
    8·1 answer
  • How to do improper fractions with 3.8 repeating
    9·1 answer
  • The ratio of the number of red beads to the number of green beads to the number of blue beads is 2 : 3 : 7. There are 150 more b
    7·1 answer
  • (6x+3)(-5x-6) <br><br> i need 20 more characters so i'm typing this
    6·1 answer
  • Are my answers correct
    8·2 answers
  • Question 1
    15·1 answer
  • (p²-pq + q²) ( 3p+ 3q) ​
    15·1 answer
  • Christopher earns $5. 80 an hour and time-and-a-half for all hours over 40 hours. How much did he earn the week he worked 44. 5
    14·1 answer
  • I will give brainiest answer to whomever solves this
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!