Most bacteria rely on binary fission for propagation. Conceptually this is a simple process; a cell just needs to grow to twice its starting size and then split in two. But, to remain viable and competitive, a bacterium must divide at the right time, in the right place, and must provide each offspring with a complete copy of its essential genetic material. Bacterial cell division is studied in many research laboratories throughout the world. These investigations are uncovering the genetic mechanisms that regulate and drive bacterial cell division. Understanding the mechanics of this process is of great interest because it may allow for the design of new chemicals or novel antibiotics that specifically target and interfere with cell division in bacteria.
- The balance between the chemical and electrical forces pushing potassium through potassium channels and across the membrane is represented by the potassium equilibrium potential.
- At the equilibrium potential of potassium, which is -80mV, there is no net movement of potassium ions.
<h3>At potassium's equilibrium potential, what happens?</h3>
- At equilibrium, the electrical potential gradient across the membrane precisely balances the gradient of K+ concentration.
- There is no net migration of K+ from one side to the other, despite the fact that K+ ions continue to traverse the membrane via channels.
<h3>How does potassium diffuse in order to influence the membrane potential?</h3>
- Potassium ions will flow down their concentration gradient, or towards the exterior of the cell, because the membrane is permeable to them.
- Although the membrane is not permeable to sodium, there is a concentration gradient that favors sodium diffusion in the opposite direction.
To learn more about equilibrium potential visit:
brainly.com/question/28250005
#SPJ4
The answer should be D. Electrons
Sterilization controls the microbial in this world
Answer:
D.) saprophytic
Explanation:
Saprophytic fungi break down dead matter by releasing enzymes. This allows for the matter to be taken up by the fungi as a food source.