2 Fluorine atoms covalently bonded with each other, each sharing an equal number of a single, one valence electron to achieve a stable octet, would form a diatonic fluorine gas. It is a diatomic molecule, a molecule consisting of 2 atoms that are the same, in this case fluorine.
In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which an acid and a base react quantitatively with each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution.
Balanced chemical equation for the reaction is:
2S (g) + (g)+ 2O (l) ⇒
Moles of formed is 5.75 moles.
Moles of oxygen used is 5.75 moles in the reaction.
Explanation:
Data given:
moles of S = 11.5 moles
moles of = ?
Moles of needed =?
balanced equation with states of matter =?
Balanced chemical reaction under STP condition is given as:
2S(g) + (g) + 2O (l) ⇒
From the balanced reaction 2 moles of sulphur dioxide reacted to form 1 mole of sulphuric acid:
so, from 11.5 moles of S, x moles of is formed
2x = 11.5
x = 5.75 moles of sulphuric acid formed.
From the balanced reaction 1 mole of oxygen reacted to form 1 mole of sulphuric acid.
when 11.5 moles of Sulphur dioxide reacted then oxygen in the reaction is 5.75 moles.
Answer:
Before performing chemical reactions, it is helpful to know how much product will be produced with given quantities of reactants. This is known as the theoretical yield. This is a strategy to use when calculating the theoretical yield of a chemical reaction. The same strategy can be applied to determine the amount of each reagent needed to produce a desired amount of product.
Explanation:
Reagent Examples
Reagents may be compounds or mixtures. In organic chemistry, most are small organic molecules or inorganic compounds. Examples of reagents include Grignard reagent, Tollens' reagent, Fehling's reagent, Collins reagent, and Fenton's reagent. However, a substance may be used as a reagent without having the word in its name.
<h2>Acetic Acid + Sodium ethoxide ⇄ Butyric Acid + Sodium Hydroxide</h2>
Explanation:
An ionic equation for the reaction of acetic acid with sodium ethoxide is as follows -
Acetic Acid and Sodium ethanolate (sodium ethoxide)
Butyric Acid and Sodium hydroxide
Hence,
Acetic Acid + Sodium ethoxide ⇄ Butyric Acid + Sodium Hydroxide
⇄
- Weak acids and bases have low energy than strong acids and bases.
- The chemical equilibria shift the reaction side with the species having lower energy.
- Given reaction is an acid-base reaction in which the equilibrium favors the starting material that means it will go to the side of the weakest acid that is acetic acid is weaker than butyric acid.