Answer:
ρ = 1.08 g/cm³
Explanation:
Step 1: Given data
Mass of the substance (m): 21.112 g
Volume of the substance (V): 19.5 cm³
Step 2: Calculate the density of the substance
The density (ρ) of a substance is equal to its mass divided by its volume.
ρ = m / V
ρ = 21.112 g / 19.5 cm³
ρ = 1.08 g/cm³
The density of the substance is 1.08 g/cm³.
Answer:
To calculate molarity, divide the number of moles of solute by the volume of the solution in liters. If you don't know the number of moles of solute but you know the mass, start by finding the molar mass of the solute, which is equal to all of the molar masses of each element in the solution added together.
Explanation:
try starting with 35.0 and dived it by the volume
Answer:
The reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
- So, according to Le Chatelier's principle, removing the product (N₂O₃) from the system means decreasing the concentration of the products; thus, the reaction will proceed forward to produce more product to minimize the stress of removing N₂O₃ from the system.
- <em>So, the reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
</em>
<em></em>
a is the answer hope this helps
Well the elements would be N, P, As, Sb, and Bi. Their electron configuration would be N= [He] 2s2 2p3, P= 1s2 2s2 2p6 3s2 3p3, As= [Ar] 3d10 4s2 4p3, Sb= Kr 4d10 5s2 5p3, and Bi= Xe 4f14 5d10 6s2 6p3.<span />