Answer:
need points
Step-by-step explanation:
gchfyfyjfuf
Answer:
C
Step-by-step explanation:
First, let's work out the two triangles:
Area of triangle: bxh/2
2 x 8/2 = 8
Because there is two triangles multiply 8 by 2 = 16
To work out the area of the central rectangle:
Area of rectangle: l x w
3 x 8 = 24
Add 16+24 = 40 square feet
Answer:
R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Step-by-step explanation:
Squaring both sides of equation:
I^2 = (ER)^2/(R^2 + (WL)^2)
<=>(ER)^2 = (I^2)*(R^2 + (WL)^2)
<=>(ER)^2 - (IR)^2 = (IWL)^2
<=> R^2(E^2 - I^2) = (IWL)^2
<=> R^2 = (IWL)^2/(E^2 - I^2)
<=> R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Hope this helps!
<span>(3.5, 3) is the circumcenter of triangle ABC.
The circumcenter of a triangle is the intersection of the perpendicular bisectors of each side. All three of these perpendicular bisectors will intersect at the same point. So you have a nice self check to make sure your math is correct. Now let's calculate the equation for these bisectors.
Line segment AB:
Slope
(4-2)/(1-1) = 2/0 = infinity.
This line segment is perfectly vertical. So the bisector will be perfectly horizontal, and will pass through ((1+1)/2, (4+2)/2) = (2/2, 6/2) = (1,3).
So the equation for this perpendicular bisector is y = 3.
Line segment BC
(2-2)/(6-1) = 0/5 = 0
This line segment is perfectly horizontal. So the bisector will be perfectly vertical, and will pass through ((1+6)/2,(2+2)/2) = (7/2, 4/2) = (3.5, 2)
So the equation for this perpendicular bisector is x=3.5
So those two bisectors will intersect at point (3.5,3) which is the circumcenter of triangle ABC.
Now let's do a cross check to make sure that's correct.
Line segment AC
Slope = (4-2)/(1-6) = 2/-5 = -2/5
The perpendicular will have slope 5/2 = 2.5. So the equation is of the form
y = 2.5*x + b
And will pass through the point
((1+6)/2, (4+2)/2) = (7/2, 6/2) = (3.5, 3)
Plug in those coordinates and calculate b.
y = 2.5x + b
3 = 2.5*3.5 + b
3 = 8.75 + b
-5.75 = b
So the equation for the 3rd bisector is
y = 2.5x - 5.75
Now let's check if the intersection with this line against the other 2 works.
Determining intersection between bisector of AC and AB
y = 2.5x - 5.75
y = 3
3 = 2.5x - 5.75
8.75 = 2.5x
3.5 = x
And we get the correct value. Now to check AC and BC
y = 2.5x - 5.75
x = 3.5
y = 2.5*3.5 - 5.75
y = 8.75 - 5.75
y = 3
And we still get the correct intersection.</span>
Answer:
(1, 6 )
Step-by-step explanation:
5x + 2y = 17 → (1)
4x + y = 10 → (2)
Multiplying (2) by - 2 and adding to (1) will eliminate the y- term
- 8x - 2y = - 20 → (3)
Add (1) and (3) term by term to eliminate y
- 3x + 0 = - 3
- 3x = - 3 ( divide both sides by - 3 )
x = 1
Substitute x = 1 into either of the 2 equations and solve for x
Substituting into (1)
5(1) + 2y = 17
5 + 2y = 17 ( subtract 5 from both sides )
2y = 12 ( divide both sides by 2 )
y = 6
solution is (1, 6 )