<span>to sue the government in cases of unjust laws to persuade legislators to share the scientists' views on issues to make honest, ethical presentations of data to represent the interests of the business community</span>
Answer:
The <u>PCO₂</u> -carbon dioxide partial pressure- in the alveoli is 40 mm Hg and that of the blood entering the pulmonary capillaries is <u>45 mmHg</u>. This causes <u>carbon dioxide</u> to diffuse down its partial pressure gradient from the blood into the alveoli.
Explanation:
Gas exchange is a physiological process that involves the entry of oxygen into the body and tissues and the exit of carbon dioxide, a product of metabolic reactions.
At the pulmonary level, gas exchange occurs between the alveoli and the alveolar capillary, and the diffusion of gases across the alveolar-capillary barrier is dependent on a pressure gradient due to the partial pressure of gases.
In the case of CO₂ the diffusion goes from where the partial pressure is higher to where it is lower, i.e. <u>from the alveolar capillary, where the PCO₂ is 45 mmHg, to the pulmonary alveolus, where the PCO₂ is 40 mmHg</u>.
Learn more:
Gas exchange brainly.com/question/4469204
Answer:
The one treated with DNase and protease
Explanation:
<em>The samples that will transform yellow into purple if RNA is the genetic material are the ones treated with </em><em>DNase </em><em>and </em><em>protease</em><em> respectively.</em>
<u>The treatment of the heat-killed sample of the purple life with DNase will ensure that the DNA in the sample becomes degraded while treatment with protease will ensure that protein is degraded, leaving only the RNA. Thus, the RNA can be taken up by the yellow life form and become transformed into purple if indeed RNA is the genetic material.</u>
The sample treated with RNase cannot transform the yellow life into purple because the RNase catalyzes the degradation of RNA into smaller components.
Answer:
never give up its an order if you do then so dose life
Explanation:
never give up
mRNA or Messenger RNA
mRNA transcribes the genetic code from DNA into a form that can be read and used to make proteins. mRNA carries genetic information from the nucleus to the cytoplasm of a cell.<span>rRNA or Ribosomal RNA
rRNA is located in the cytoplasm of a cell, where ribosomes are found. rRNA directs the translation of mRNA into proteins.</span><span>tRNA or Transfer RNA
Like rRNA, tRNA is located in the cellular cytoplasm and is involved in protein synthesis. Transfer RNA brings or transfers amino acids to the ribosome that correspond to each three-nucleotide codon of rRNA. The amino acids then can be joined together and processed to make polypeptides and proteins</span>
<span>
</span>