Answer:
11.34x + 9.45y = 141.75
y = (141.75 - 11.34x)/9.45
y = -1.2x + 15
Draw a straight line only in the first quadrant connecting these points:
(0,15)
(12.5,0)
We have a sample of 28 data points. The sample mean is 30.0 and the sample standard deviation is 2.40. The confidence level required is 98%. Then, we calculate α by:

The confidence interval for the population mean, given the sample mean μ and the sample standard deviation σ, can be calculated as:
![CI(\mu)=\lbrack x-Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}},x+Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack%20x-Z_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%2Cx%2BZ_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%5Crbrack)
Where n is the sample size, and Z is the z-score for 1 - α/2. Using the known values:
![CI(\mu)=\lbrack30.0-Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}},30.0+Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack30.0-Z_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%2C30.0%2BZ_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%5Crbrack)
Where (from tables):

Finally, the interval at 98% confidence level is:
The given figure can be drawn as,
From the figure,


Since angle of incidence will be equal to angle of reflection,
Therefore, the height of cactus is 6 m.
Answer:
562.5ml
Step-by-step explanation:
using percentage multipliers you just have to do:
add 0.25 to 1 because that will make 125%
then multiply it by 450ml
450ml x 1.25 = 562.5ml
X=(b/2m)*y-e is the answer I believe.